Paracompact uniform honeycombs

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Example paracompact regular honeycombs
H3 336 CC center.png
{3,3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 633 FC boundary.png
{6,3,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
H3 436 CC center.png
{4,3,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 634 FC boundary.png
{6,3,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
H3 536 CC center.png
{5,3,6}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 635 FC boundary.png
{6,3,5}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
H3 636 FC boundary.png
{6,3,6}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 363 FC boundary.png
{3,6,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
H3 443 FC boundary.png
{4,4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
H3 344 CC center.png
{3,4,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H3 444 FC boundary.png
{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png

In geometry, uniform honeycombs in hyperbolic space are tessellations of convex uniform polyhedron cells. In 3-dimensional hyperbolic space there are 23 Coxeter group families of paracompact uniform honeycombs, generated as Wythoff constructions, and represented by ring permutations of the Coxeter diagrams for each family. These families can produce uniform honeycombs with infinite or unbounded facets or vertex figure, including ideal vertices at infinity, similar to the hyperbolic uniform tilings in 2-dimensions.

Regular paracompact honeycombs

Of the uniform paracompact H3 honeycombs, 11 are regular, meaning that their group of symmetries acts transitively on their flags. These have Schläfli symbol {3,3,6}, {6,3,3}, {3,4,4}, {4,4,3}, {3,6,3}, {4,3,6}, {6,3,4}, {4,4,4}, {5,3,6}, {6,3,5}, and {6,3,6}, and are shown below.

Name Schläfli
Symbol
{p,q,r}
Coxeter
CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
Cell
type
{p,q}
Face
type
{p}
Edge
figure
{r}
Vertex
figure

{q,r}
Dual Coxeter
group
Order-6 tetrahedral honeycomb {3,3,6} CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {3,3} {3} {6} {3,6} {6,3,3} [6,3,3]
Hexagonal tiling honeycomb {6,3,3} CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png {6,3} {6} {3} {3,3} {3,3,6}
Order-4 octahedral honeycomb {3,4,4} CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png {3,4} {3} {4} {4,4} {4,4,3} [4,4,3]
Square tiling honeycomb {4,4,3} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png {4,4} {4} {3} {4,3} {3,4,4}
Triangular tiling honeycomb {3,6,3} CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png {3,6} {3} {3} {6,3} Self-dual [3,6,3]
Order-6 cubic honeycomb {4,3,6} CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {4,3} {4} {4} {3,4} {6,3,4} [6,3,4]
Order-4 hexagonal tiling honeycomb {6,3,4} CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {6,3} {6} {4} {3,4} {4,3,6}
Order-4 square tiling honeycomb {4,4,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png {4,4} {4} {4} {4,4} Self-dual [4,4,4]
Order-6 dodecahedral honeycomb {5,3,6} CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {5,3} {5} {5} {3,5} {6,3,5} [6,3,5]
Order-5 hexagonal tiling honeycomb {6,3,5} CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png {6,3} {6} {5} {3,5} {5,3,6}
Order-6 hexagonal tiling honeycomb {6,3,6} CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {6,3} {6} {6} {3,6} Self-dual [6,3,6]

Coxeter groups of paracompact uniform honeycombs

Hyperbolic subgroup tree 36.png Hyperbolic subgroup tree 344.png
These graphs show subgroup relations of paracompact hyperbolic Coxeter groups. Order 2 subgroups represent bisecting a Goursat tetrahedron with a plane of mirror symmetry.

This is a complete enumeration of the 151 unique Wythoffian paracompact uniform honeycombs generated from tetrahedral fundamental domains (rank 4 paracompact coxeter groups). The honeycombs are indexed here for cross-referencing duplicate forms, with brackets around the nonprimary constructions.

The alternations are listed, but are either repeats or don't generate uniform solutions. Single-hole alternations represent a mirror removal operation. If an end-node is removed, another simplex (tetrahedral) family is generated. If a hole has two branches, a Vinberg polytope is generated, although only Vinberg polytope with mirror symmetry are related to the simplex groups, and their uniform honeycombs have not been systematically explored. These nonsimplectic (pyramidal) Coxeter groups are not enumerated on this page, except as special cases of half groups of the tetrahedral ones.

Tetrahedral hyperbolic paracompact group summary
Coxeter notation Simplex
volume
Commutator subgroup Coxeter diagram Unique honeycomb count
[6,3,3] 0.0422892336 [1+,6,(3,3)+] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 15
[4,4,3] 0.0763304662 [1+,4,1+,4,3+] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png 15
[3,3[3]] 0.0845784672 [3,3[3]]+ CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png 4
[6,3,4] 0.1057230840 [1+,6,3+,4,1+] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 15
[3,41,1] 0.1526609324 [3+,41+,1+] CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png 4
[3,6,3] 0.1691569344 [3+,6,3+] CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png 8
[6,3,5] 0.1715016613 [1+,6,(3,5)+] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png 15
[6,31,1] 0.2114461680 [1+,6,(31,1)+] CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png 4
[4,3[3]] 0.2114461680 [1+,4,3[3]]+ CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png 4
[4,4,4] 0.2289913985 [4+,4+,4+]+ CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png 6
[6,3,6] 0.2537354016 [1+,6,3+,6,1+] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png 8
[(4,4,3,3)] 0.3053218647 [(4,1+,4,(3,3)+)] CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png 4
[5,3[3]] 0.3430033226 [5,3[3]]+ CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png 4
[(6,3,3,3)] 0.3641071004 [(6,3,3,3)]+ CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel 2.png 9
[3[]x[]] 0.4228923360 [3[]x[]]+ CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png 1
[41,1,1] 0.4579827971 [1+,41+,1+,1+] CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png 0
[6,3[3]] 0.5074708032 [1+,6,3[3]] CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png 2
[(6,3,4,3)] 0.5258402692 [(6,3+,4,3+)] CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png 9
[(4,4,4,3)] 0.5562821156 [(4,1+,4,1+,4,3+)] CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.png 9
[(6,3,5,3)] 0.6729858045 [(6,3,5,3)]+ CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png 9
[(6,3,6,3)] 0.8457846720 [(6,3+,6,3+)] CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png 5
[(4,4,4,4)] 0.9159655942 [(4+,4+,4+,4+)] CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.pngCDel label4.png 1
[3[3,3]] 1.014916064 [3[3,3]]+ CDel branch.pngCDel splitcross.pngCDel branch.png 0

The complete list of nonsimplectic (non-tetrahedral) paracompact Coxeter groups was published by P. Tumarkin in 2003.[1] The smallest paracompact form in H3 can be represented by CDel node.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png or CDel node.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png, or [∞,3,3,∞] which can be constructed by a mirror removal of paracompact hyperbolic group [3,4,4] as [3,4,1+,4] : CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node c3.png = CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 2a2b-cross.pngCDel nodeab c3.png. The doubled fundamental domain changes from a tetrahedron into a quadrilateral pyramid. Another pyramid is CDel node.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png or CDel node.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png, constructed as [4,4,1+,4] = [∞,4,4,∞] : CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node c3.png = CDel node c1.pngCDel split1-44.pngCDel nodeab c2.pngCDel 2a2b-cross.pngCDel nodeab c3.png.

Removing a mirror from some of the cyclic hyperbolic Coxeter graphs become bow-tie graphs: [(3,3,4,1+,4)] = [((3,∞,3)),((3,∞,3))] or CDel branchu.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu.png, [(3,4,4,1+,4)] = [((4,∞,3)),((3,∞,4))] or CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu.png, [(4,4,4,1+,4)] = [((4,∞,4)),((4,∞,4))] or CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu.png. CDel labelh.pngCDel node.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c3.png = CDel labelinfin.pngCDel branch c1-2.pngCDel split2.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.pngCDel labelinfin.png, CDel labelh.pngCDel node.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-43.pngCDel node c3.png = CDel labelinfin.pngCDel branch c1-2.pngCDel split2-43.pngCDel node c3.pngCDel split1-43.pngCDel branch c1-2.pngCDel labelinfin.png, CDel labelh.pngCDel node.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-44.pngCDel node c3.png = CDel labelinfin.pngCDel branch c1-2.pngCDel split2-44.pngCDel node c3.pngCDel split1-44.pngCDel branch c1-2.pngCDel labelinfin.png.

Another nonsimplectic half groups is CDel nodeab c1-2.pngCDel split2-44.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel node c3.pngCDel split1-uu.pngCDel nodeab c1-2.pngCDel 2a2b-cross.pngCDel nodeab c1-2.pngCDel split2-uu.pngCDel node c3.png.

A radial nonsimplectic subgroup is CDel label4.pngCDel branch c1-2.pngCDel 4a4b.pngCDel branch.pngCDel labels.pngCDel node c1.pngCDel splitplit1u-44.pngCDel branch3u c2.pngCDel 4a4buc-cross.pngCDel branch3u c1.pngCDel splitplit2u-44.pngCDel node c2.png, which can be doubled into a triangular prism domain as CDel node c1.pngCDel splitplit1u-44.pngCDel branch3u c2.pngCDel 4a4buc-cross.pngCDel branch3u c3.pngCDel splitplit2u-44.pngCDel node c4.pngCDel branchu c1-4.pngCDel 4a4b.pngFile:CDel branch c2-3.pngCDel split2-44.pngCDel node.pngCDel labelh.png.

Pyramidal hyperbolic paracompact group summary
Dimension Rank Graphs
H3 5

CDel node.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png | CDel node.pngCDel split1-43.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png | CDel node.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png | CDel node.pngCDel split1-53.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png | CDel node.pngCDel split1-63.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel branchu.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-43.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png
CDel branchu.pngCDel split2-53.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-54.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-55.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-63.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-64.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-65.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png | CDel branchu.pngCDel split2-66.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png
CDel branchu.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-53.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu.png | CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-43.pngCDel branchu.png | CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu.png | CDel branchu.pngCDel split2-54.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-55.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-63.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-64.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-65.pngCDel node.pngCDel split1.pngCDel branchu.png | CDel branchu.pngCDel split2-66.pngCDel node.pngCDel split1.pngCDel branchu.png

Linear graphs

[6,3,3] family

# Honeycomb name
Coxeter diagram: CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.pngCDel 3.pngCDel node n4.png
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figure Picture
1
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
4
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
1 hexagonal
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{6,3,3}
- - - (4)
Uniform tiling 63-t0.png
(6.6.6)
Order-3 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Tetrahedron
Error creating thumbnail: convert: improper image header `/usr/local/www/mediawiki/w/images/7/7a/H3_633_FC_boundary.png' @ error/png.c/ReadPNGImage/4192.
convert: no images defined `/tmp//transform_900e83319bf3.png' @ error/convert.c/ConvertImageCommand/3229.

Error code: 1
2 rectified hexagonal
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t1{6,3,3} or r{6,3,3}
(2)
Uniform polyhedron-33-t0.png
(3.3.3)
- - (3)
Uniform tiling 63-t1.png
(3.6.3.6)
80px CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism
100px
3 rectified order-6 tetrahedral
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t1{3,3,6} or r{3,3,6}
(6)
Uniform polyhedron-33-t1.png
(3.3.3.3)
- - (2)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
80px CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Hexagonal prism
100px
4 order-6 tetrahedral
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
{3,3,6}
(∞)
Uniform polyhedron-33-t2.png
(3.3.3)
- - - Uniform tiling 63-t2.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Triangular tiling
H3 336 CC center.png
5 truncated hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t0,1{6,3,3} or t{6,3,3}
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
- - (3)
Uniform tiling 63-t01.png
(3.12.12)
80px
Triangular pyramid
6 cantellated hexagonal
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,2{6,3,3} or rr{6,3,3}
(1)
Uniform polyhedron-33-t1.png
3.3.3.3
(2)
Triangular prism.png
(4.4.3)
- (2)
Uniform tiling 63-t02.png
(3.4.6.4)
80px
7 runcinated hexagonal
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{6,3,3}
(1)
Uniform polyhedron-33-t2.png
(3.3.3)
(3)
Triangular prism.png
(4.4.3)
(3)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t0.png
(6.6.6)
80px
8 cantellated order-6 tetrahedral
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,2{3,3,6} or rr{3,3,6}
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
- (2)
Hexagonal prism.png
(4.4.6)
(2)
Uniform tiling 63-t1.png
(3.6.3.6)
80px
9 bitruncated hexagonal
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{6,3,3} or 2t{6,3,3}
(2)
Uniform polyhedron-33-t01.png
(3.6.6)
- - (2)
Uniform tiling 63-t12.png
(6.6.6)
80px
10 truncated order-6 tetrahedral
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1{3,3,6} or t{3,3,6}
(6)
Uniform polyhedron-33-t12.png
(3.6.6)
- - (1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
80px
11 cantitruncated hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,2{6,3,3} or tr{6,3,3}
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Triangular prism.png
(4.4.3)
- (2)
Uniform tiling 63-t012.png
(4.6.12)
80px
12 runcitruncated hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{6,3,3}
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(2)
Triangular prism.png
(4.4.3)
(1)
Dodecagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t01.png
(3.12.12)
80px
13 runcitruncated order-6 tetrahedral
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,3{3,3,6}
(1)
Uniform polyhedron-33-t12.png
(3.6.6)
(1)
Hexagonal prism.png
(4.4.6)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
80px
14 cantitruncated order-6 tetrahedral
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2{3,3,6} or tr{3,3,6}
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
- (1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t12.png
(6.6.6)
80px
15 omnitruncated hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{6,3,3}
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Dodecagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t012.png
(4.6.12)
80px
Alternated forms
# Honeycomb name
Coxeter diagram: CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.pngCDel 3.pngCDel node n4.png
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figure Picture
1
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
4
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Alt
[137] alternated hexagonal
(CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png) = CDel branch hh.pngCDel splitcross.pngCDel branch hh.png
- - (4)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(4)
Uniform polyhedron-33-t2.png
(3.3.3)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
[138] cantic hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t1.png
(3.3.3.3)
- (2)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-33-t12.png
(3.6.6)
80px
[139] runcic hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(3)
Uniform polyhedron-33-t02.png
(3.4.3.4)
80px
[140] runcicantic hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t01.png
(3.10.10)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
80px
Nonuniform snub rectified order-6 tetrahedral
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,3,6}
Uniform polyhedron-33-s012.png Uniform tiling 63-h12.png Tetrahedron.png
Irr. (3.3.3)
Nonuniform cantic snub order-6 tetrahedral
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
sr3{3,3,6}
Nonuniform omnisnub order-6 tetrahedral
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{6,3,3}
Uniform polyhedron-33-s012.png Uniform tiling 63-snub.png Tetrahedron.png
Irr. (3.3.3)

[6,3,4] family

There are 15 forms, generated by ring permutations of the Coxeter group: [6,3,4] or CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

# Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertex Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
16 (Regular) order-4 hexagonal
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
{6,3,4}
- - - (8)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.png
(6.6.6)
80px CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(3.3.3.3)
H3 634 FC boundary.png
17 rectified order-4 hexagonal
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t1{6,3,4} or r{6,3,4}
(2)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
(3.3.3.3)
- - (4)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
80px CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
(4.4.4)
100px
18 rectified order-6 cubic
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t1{4,3,6} or r{4,3,6}
(6)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png
(3.4.3.4)
- - (2)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
80px CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
(6.4.4)
100px
19 order-6 cubic
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
{4,3,6}
(20)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Hexahedron.png
(4.4.4)
- - - Uniform tiling 63-t2.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
(3.3.3.3.3.3)
H3 436 CC center.png
20 truncated order-4 hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t0,1{6,3,4} or t{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
(3.3.3.3)
- - (4)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t01.png
(3.12.12)
80px
21 bitruncated order-6 cubic
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t1,2{6,3,4} or 2t{6,3,4}
(2)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated octahedron.png
(4.6.6)
- - (2)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t12.png
(6.6.6)
80px
22 truncated order-6 cubic
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1{4,3,6} or t{4,3,6}
(6)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated hexahedron.png
(3.8.8)
- - (1)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
80px
23 cantellated order-4 hexagonal
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,2{6,3,4} or rr{6,3,4}
(1)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png
(3.4.3.4)
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
(4.4.4)
- (2)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t02.png
(3.4.6.4)
80px
24 cantellated order-6 cubic
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,2{4,3,6} or rr{4,3,6}
(2)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Small rhombicuboctahedron.png
(3.4.4.4)
- (2)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
80px
25 runcinated order-6 cubic
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,3{6,3,4}
(1)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Hexahedron.png
(4.4.4)
(3)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
(4.4.4)
(3)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.png
(6.6.6)
80px
26 cantitruncated order-4 hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,1,2{6,3,4} or tr{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated octahedron.png
(4.6.6)
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
(4.4.4)
- (2)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t012.png
(4.6.12)
80px
27 cantitruncated order-6 cubic
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,2{4,3,6} or tr{4,3,6}
(2)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Great rhombicuboctahedron.png
(4.6.8)
- (1)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t12.png
(6.6.6)
80px
28 runcitruncated order-4 hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,1,3{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Small rhombicuboctahedron.png
(3.4.4.4)
(1)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
(4.4.4)
(2)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Dodecagonal prism.png
(4.4.12)
(1)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t01.png
(3.12.12)
80px
29 runcitruncated order-6 cubic
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,3{4,3,6}
(1)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated hexahedron.png
(3.8.8)
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Octagonal prism.png
(4.4.8)
(1)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t02.png
(3.4.6.4)
80px
30 omnitruncated order-6 cubic
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,2,3{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Great rhombicuboctahedron.png
(4.6.8)
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Octagonal prism.png
(4.4.8)
(1)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Dodecagonal prism.png
(4.4.12)
(1)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t012.png
(4.6.12)
80px
Alternated forms
# Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertex Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Alt
[87] alternated order-6 cubic
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png
h{4,3,6}
Tetrahedron.png CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
(3.3.3)
    Uniform tiling 63-t2.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
[88] cantic order-6 cubic
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png
h2{4,3,6}
(2)
Truncated tetrahedron.png
(3.6.6)
- - (1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t12.png
(6.6.6)
80px
[89] runcic order-6 cubic
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.png
h3{4,3,6}
(1)
Tetrahedron.png
(3.3.3)
- - (1)
Uniform tiling 63-t0.png
(6.6.6)
(3)
Uniform tiling 63-t02.png
(3.4.6.4)
80px
[90] runcicantic order-6 cubic
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.png
h2,3{4,3,6}
(1)
Truncated tetrahedron.png
(3.6.6)
- - (1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.png
(4.6.12)
80px
[141] alternated order-4 hexagonal
CDel node h1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
h{6,3,4}
- - Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform polyhedron-43-t2.png
(3.3.3.3)
Uniform polyhedron-43-t12.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
[142] cantic order-4 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node 1.png
h1{6,3,4}
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
- (2)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-43-t12.png
(4.6.6)
80px
[143] runcic order-4 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.png
h3{6,3,4}
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(3)
Uniform polyhedron-43-t02.png
(3.4.4.4)
80px
[144] runcicantic order-4 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
h2,3{6,3,4}
(1)
Uniform polyhedron-43-t01.png
(3.8.8)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
80px
[151] quarter order-4 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
q{6,3,4}
(3)
Uniform polyhedron-33-t01.png
(1)
Uniform polyhedron-33-t0.png
- (1)
Uniform tiling 333-t0.png
(3)
Uniform tiling 333-t02.png
80px
Nonuniform bisnub order-6 cubic
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node h.pngCDel split1.pngCDel branch hh.pngCDel split2.pngCDel node h.png
2s{4,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-h01.svg
(3.3.3.3.3.3)
- - CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-h12.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Nonuniform runcic bisnub order-6 cubic
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 2.pngCDel node h.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node h.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Nonuniform snub rectified order-6 cubic
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{4,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Snub hexahedron.png
(3.3.3.3.3)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
(3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.4)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Nonuniform runcic snub rectified order-6 cubic
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
sr3{4,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node 1.pngCDel 2.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node 1.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Nonuniform snub rectified order-4 hexagonal
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
sr{6,3,4}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-h01.svg
(3.3.3.3.3.3)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
(3.3.3)
- CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Nonuniform runcisnub rectified order-4 hexagonal
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
sr3{6,3,4}
Nonuniform omnisnub rectified order-6 cubic
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
ht0,1,2,3{6,3,4}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Snub hexahedron.png
(3.3.3.3.4)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png
Square antiprism.png
(3.3.3.4)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)

[6,3,5] family

# Honeycomb name
Coxeter diagram
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 5.pngCDel node n5.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 5.pngCDel node n5.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n5.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
31 order-5 hexagonal
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
{6,3,5}
- - - (20)
Uniform tiling 63-t0.png
(6)3
80px CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Icosahedron
H3 635 FC boundary.png
32 rectified order-5 hexagonal
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t1{6,3,5} or r{6,3,5}
(2)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
- - (5)
Uniform tiling 63-t1.png
(3.6)2
80px CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 5.pngCDel node.png
(5.4.4)
100px
33 rectified order-6 dodecahedral
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t1{5,3,6} or r{5,3,6}
(5)
Uniform polyhedron-53-t1.png
(3.5.3.5)
- - (2)
Uniform tiling 63-t2.png
(3)6
80px CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
(6.4.4)
100px
34 order-6 dodecahedral
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
{5,3,6}
Uniform polyhedron-53-t0.png
(5.5.5)
- - - (∞)
Uniform tiling 63-t2.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
(3)6
H3 536 CC center.png
35 truncated order-6 dodecahedral
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t0,1{6,3,5} or t{6,3,5}
(1)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
- - (5)
Uniform tiling 63-t01.png
3.12.12
80px
36 cantellated order-6 dodecahedral
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t0,2{6,3,5} or rr{6,3,5}
(1)
Uniform polyhedron-53-t1.png
(3.5.3.5)
(2)
Pentagonal prism.png
(5.4.4)
- (2)
Uniform tiling 63-t02.png
3.4.6.4
80px
37 runcinated order-6 dodecahedral
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,3{6,3,5}
(1)
Uniform polyhedron-53-t0.png
(5.5.5)
- (6)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t0.png
(6)3
80px
38 cantellated order-6 dodecahedral
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,2{5,3,6} or rr{5,3,6}
(2)
Uniform polyhedron-53-t02.png
(4.3.4.5)
- (2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t1.png
(3.6)2
80px
39 bitruncated order-6 dodecahedral
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t1,2{6,3,5} or 2t{6,3,5}
(2)
Uniform polyhedron-53-t12.png
(5.6.6)
- - (2)
Uniform tiling 63-t12.png
(6)3
80px
40 truncated order-6 dodecahedral
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1{5,3,6} or t{5,3,6}
(6)
Uniform polyhedron-53-t01.png
(3.10.10)
- - (1)
Uniform tiling 63-t2.png
(3)6
80px
41 cantitruncated order-5 hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t0,1,2{6,3,5} or tr{6,3,5}
(1)
Uniform polyhedron-53-t12.png
(5.6.6)
(1)
Pentagonal prism.png
(5.4.4)
- (2)
Uniform tiling 63-t012.png
4.6.10
80px
42 runcitruncated order-5 hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,1,3{6,3,5}
(1)
Uniform polyhedron-53-t02.png
(4.3.4.5)
(1)
Pentagonal prism.png
(5.4.4)
(2)
Dodecagonal prism.png
(12.4.4)
(1)
Uniform tiling 63-t01.png
3.12.12
80px
43 runcitruncated order-6 dodecahedral
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1,3{5,3,6}
(1)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Decagonal prism.png
(10.4.4)
(2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t02.png
3.4.6.4
80px
44 cantitruncated order-6 dodecahedral
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1,2{5,3,6} or tr{5,3,6}
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
- (2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t12.png
(6)3
80px
45 omnitruncated order-6 dodecahedral
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1,2,3{6,3,5}
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Decagonal prism.png
(10.4.4)
(1)
Dodecagonal prism.png
(12.4.4)
(1)
Uniform tiling 63-t012.png
4.6.12
80px
Alternated forms
# Honeycomb name
Coxeter diagram
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 5.pngCDel node n5.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 5.pngCDel node n5.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n5.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Alt
[145] alternated order-5 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
h{6,3,5}
- - - (20)
Uniform tiling 333-t1.png
(3)6
(12)
Icosahedron.png
(3)5
Uniform polyhedron-53-t12.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(5.6.6)
[146] cantic order-5 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.png
h2{6,3,5}
(1)
Uniform polyhedron-53-t1.png
(3.5.3.5)
- (2)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-53-t12.png
(5.6.6)
80px
[147] runcic order-5 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.png
h3{6,3,5}
(1)
Uniform polyhedron-53-t0.png
(5.5.5)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(3)
Uniform polyhedron-53-t02.png
(3.4.5.4)
80px
[148] runcicantic order-5 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.png
h2,3{6,3,5}
(1)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-53-t012.png
(4.6.10)
80px
Nonuniform snub rectified order-6 dodecahedral
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel 5.pngCDel node h.png
sr{5,3,6}
Uniform polyhedron-53-s012.png
(3.3.5.3.5)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
- Trigonal antiprism.png
(3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-t0.png
irr. tet
Nonuniform omnisnub order-5 hexagonal
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
ht0,1,2,3{6,3,5}
Uniform polyhedron-53-s012.png
(3.3.5.3.5)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
Pentagonal antiprism.png
(3.3.3.5)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 5.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.6.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-t0.png
irr. tet

[6,3,6] family

There are 9 forms, generated by ring permutations of the Coxeter group: [6,3,6] or CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png

# Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertex Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 6.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 6.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n3.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
46 order-6 hexagonal
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
{6,3,6}
- - - (20)
Uniform tiling 63-t0.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(6.6.6)
Uniform tiling 63-t2.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
H3 636 FC boundary.png
47 rectified order-6 hexagonal
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
t1{6,3,6} or r{6,3,6}
(2)
Uniform tiling 63-t2.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
- - (6)
Uniform tiling 63-t1.png
(3.6.3.6)
80px CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
(6.4.4)
100px
48 truncated order-6 hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
t0,1{6,3,6} or t{6,3,6}
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
- - (6)
Uniform tiling 63-t01.png
(3.12.12)
80px
49 cantellated order-6 hexagonal
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
t0,2{6,3,6} or rr{6,3,6}
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Hexagonal prism.png
(4.4.6)
- (2)
Uniform tiling 63-t012.png
(3.6.4.6)
80px
50 Runcinated order-6 hexagonal
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
t0,3{6,3,6}
(1)
Uniform tiling 63-t0.png
(6.6.6)
(3)
Hexagonal prism.png
(4.4.6)
(3)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t0.png
(6.6.6)
Runcinated order-6 hexagonal tiling honeycomb verf.png
51 cantitruncated order-6 hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
t0,1,2{6,3,6} or tr{6,3,6}
(1)
Uniform tiling 63-t12.png
(6.6.6)
(1)
Hexagonal prism.png
(4.4.6)
- (2)
Uniform tiling 63-t012.png
(4.6.12)
80px
52 runcitruncated order-6 hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
t0,1,3{6,3,6}
(1)
Uniform tiling 63-t012.png
(3.6.4.6)
(1)
Hexagonal prism.png
(4.4.6)
(2)
Decagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t01.png
(3.12.12)
80px
53 omnitruncated order-6 hexagonal
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
t0,1,2,3{6,3,6}
(1)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Decagonal prism.png
(4.4.12)
(1)
Decagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t012.png
(4.6.12)
80px
[1] bitruncated order-6 hexagonal
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.png
t1,2{6,3,6} or 2t{6,3,6}
(2)
Uniform tiling 63-t12.png
(6.6.6)
- - (2)
Uniform tiling 63-t12.png
(6.6.6)
80px H3 634 FC boundary.png
Alternated forms
# Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertex Vertex figure Picture
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 6.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 6.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n3.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
Alt
[47] rectified order-6 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
q{6,3,6} = r{6,3,6}
(2)
Uniform tiling 63-t2.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
- - (6)
Uniform tiling 63-t1.png
(3.6.3.6)
80px CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
(6.4.4)
100px
[54] triangular
(CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
h{6,3,6} = {3,6,3}
- - - CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 63-t0.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
{6,3}
H3 363 FC boundary.png
[55] cantic order-6 hexagonal
( CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
h2{6,3,6} = r{3,6,3}
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
80px 100px
[149] runcic order-6 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.png
h3{6,3,6}
(1)
Uniform tiling 63-t0.png
(6.6.6)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
80px
[150] runcicantic order-6 hexagonal
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.png
h2,3{6,3,6}
(1)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[137] alternated hexagonal
(CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h0.pngCDel node h1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch hh.pngCDel splitcross.pngCDel branch hh.png) = CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
2s{6,3,6} = h{6,3,3}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Uniform tiling 63-h12.png
(3.3.3.3.6)
- - CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-h12.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
Nonuniform snub rectified order-6 hexagonal
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
sr{6,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.png
Trigonal antiprism.png
(3.3.3.3)
- CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Nonuniform alternated runcinated order-6 hexagonal
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.png
ht0,3{6,3,6}
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.png
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.3)
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Tetrahedron.png
+(3.3.3)
Nonuniform omnisnub order-6 hexagonal
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
ht0,1,2,3{6,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)

[3,6,3] family

There are 9 forms, generated by ring permutations of the Coxeter group: [3,6,3] or CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png

# Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
CDel node n2.pngCDel 6.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 6.pngCDel node n3.png
54 triangular
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
{3,6,3}
- - - (∞)
Uniform tiling 63-t2.png
{3,6}
Uniform tiling 63-t0.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
{6,3}
H3 363 FC boundary.png
55 rectified triangular
CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
t1{3,6,3} or r{3,6,3}
(2)
Uniform tiling 63-t0.png
(6)3
- - (3)
Uniform tiling 63-t1.png
(3.6)2
80px
(3.4.4)
100px
56 cantellated triangular
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,2{3,6,3} or rr{3,6,3}
(1)
Uniform tiling 63-t1.png
(3.6)2
(2)
Triangular prism.png
(4.4.3)
- (2)
Uniform tiling 63-t02.png
(3.6.4.6)
80px
57 runcinated triangular
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{3,6,3}
(1)
Uniform tiling 63-t2.png
(3)6
(6)
Triangular prism.png
(4.4.3)
(6)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 63-t2.png
(3)6
Runcinated triangular tiling honeycomb verf.png
58 bitruncated triangular
CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{3,6,3} or 2t{3,6,3}
(2)
Uniform tiling 63-t01.png
(3.12.12)
- - (2)
Uniform tiling 63-t01.png
(3.12.12)
Bitruncated triangular tiling honeycomb verf.png
59 cantitruncated triangular
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,2{3,6,3} or tr{3,6,3}
(1)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Triangular prism.png
(4.4.3)
- (2)
Uniform tiling 63-t012.png
(4.6.12)
80px
60 runcitruncated triangular
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{3,6,3}
(1)
Uniform tiling 63-t02.png
(3.6.4.6)
(1)
Triangular prism.png
(4.4.3)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t01.png
(6)3
80px
61 omnitruncated triangular
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{3,6,3}
(1)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t012.png
(4.6.12)
80px
[1] truncated triangular
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.png
t0,1{3,6,3} or t{3,6,3} = {6,3,3}
(1)
Uniform tiling 63-t0.png
(6)3
- - (3)
Uniform tiling 63-t12.png
(6)3
80px CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3}
Error creating thumbnail: convert: improper image header `/usr/local/www/mediawiki/w/images/7/7a/H3_633_FC_boundary.png' @ error/png.c/ReadPNGImage/4192.
convert: no images defined `/tmp//transform_50c77ee0f652.png' @ error/convert.c/ConvertImageCommand/3229.

Error code: 1
Alternated forms
# Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
CDel node n2.pngCDel 6.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 6.pngCDel node n3.png
Alt
[56] cantellated triangular
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
s2{3,6,3}
(1)
Uniform tiling 63-t1.png
(3.6)2
CDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
- - (2)
Uniform tiling 63-t02.png
(3.6.4.6)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.png
Triangular prism.png
(3.4.4)
80px
[60] runcitruncated triangular
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
s2,3{3,6,3}
(1)
Uniform tiling 333-t012.png
(6)3
CDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
- (1)
Triangular prism.png
(4.4.3)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.png
(1)
40px
(3.6.4.6)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.png
(2)
Hexagonal prism.png
(4.4.6)
80px
[137] alternated hexagonal
( CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel branch hh.pngCDel splitcross.pngCDel branch hh.png ) = (CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png)
s{3,6,3}
Uniform tiling 333-t1.png
(3)6
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
- - Uniform tiling 63-h12.png
(3)6
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Tetrahedron.png
+(3)3
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
Scaliform runcisnub triangular
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
s3{3,6,3}
Uniform tiling 333-t02.png
r{6,3}
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
- Triangular prism.png
(3.4.4)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.png
Uniform tiling 333-t1.png
(3)6
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Triangular cupola.png
tricup
Nonuniform omnisnub triangular tiling honeycomb
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{3,6,3}
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Octahedron.png
(3)4
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
Octahedron.png
(3)4
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Tetrahedron.png
+(3)3

[4,4,3] family

There are 15 forms, generated by ring permutations of the Coxeter group: [4,4,3] or CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

# Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n3.png
62 square
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
{4,4,3}
- - - (6)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
80px CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Cube
H3 443 FC boundary.png
63 rectified square
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
t1{4,4,3} or r{4,4,3}
(2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
- - (3)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
80px
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism
100px
64 rectified order-4 octahedral
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t1{3,4,4} or r{3,4,4}
(4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
- - (2)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
80px 100px
65 order-4 octahedral
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
{3,4,4}
(∞)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
- - - Uniform tiling 44-t0.png CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png H3 344 CC center.png
66 truncated square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,1{4,4,3} or t{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
- - (3)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
80px
67 truncated order-4 octahedral
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1{3,4,4} or t{3,4,4}
(4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
- - (1)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
80px
68 bitruncated square
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{4,4,3} or 2t{4,4,3}
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
- - (2)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.png
80px
69 cantellated square
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,2{4,4,3} or rr{4,4,3}
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism.png
- (2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
80px
70 cantellated order-4 octahedral
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,2{3,4,4} or rr{3,4,4}
(2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
- (2)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
80px
71 runcinated square
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{4,4,3}
(1)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png
Triangular prism.png
(3)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
80px
72 cantitruncated square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,2{4,4,3} or tr{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism.png
- (2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
80px
73 cantitruncated order-4 octahedral
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2{3,4,4} or tr{3,4,4}
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
- (1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.png
80px
74 runcitruncated square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(1)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png
Triangular prism.png
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
80px
75 runcitruncated order-4 octahedral
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,3{3,4,4}
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Hexagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
80px
76 omnitruncated square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Hexagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
80px
Alternated forms
# Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n3.png
Alt
[83] alternated square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png
h{4,4,3}
- - - CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png {4,3} Uniform polyhedron-43-t1.png
(4.3.4.3)
[84] cantic order-6 cubic
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.png
h2{4,4,3}
Uniform polyhedron-43-t1.png
(3.4.3.4)
- Uniform polyhedron-43-t01.png
(3.8.8)
Uniform tiling 44-t12.png
(4.8.8)
80px
[85] runcic square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.png
h3{4,4,3}
Uniform polyhedron-43-t1.png
(3.4.3.4)
- Uniform polyhedron-43-t01.png
(3.8.8)
Uniform tiling 44-t12.png
(4.8.8)
80px
[86] runcicantic square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(4.6.6)
- Uniform polyhedron-43-t012.png
(3.4.4.4)
Uniform tiling 44-t12.png
(4.8.8)
80px
Nonsimplectic alternated rectified square
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodes 10.pngCDel 2a2b-cross.pngCDel nodes 10ru.pngCDel split2.pngCDel node.png
hr{4,4,3}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png - - CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png {}x{3}
Scaliform snub order-4 octahedral
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
s{3,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png - - CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png irr. {}v{4}
Scaliform runcisnub order-4 octahedral
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
s3{3,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node 1.pngCDel 2.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node h.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png cup-4
Nonuniform snub square
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
s{4,4,3}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png - - CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png irr. {3,3}
Nonuniform snub rectified order-4 octahedral
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png - CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png irr. {3,3}
Nonuniform alternated runcitruncated square
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,3{3,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png irr. {}v{4}
Nonuniform omnisnub square
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{4,4,3}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-s012.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
Octahedron.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
irr. {3,3}

[4,4,4] family

There are 9 forms, generated by ring permutations of the Coxeter group: [4,4,4] or CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png.

# Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Symmetry Vertex figure Picture
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n3.png
77 order-4 square
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
{4,4,4}
- - - CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
[4,4,4] CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
Cube
H3 444 FC boundary.png
78 truncated order-4 square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
t0,1{4,4,4} or t{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
- - CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
[4,4,4] 80px
79 bitruncated order-4 square
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
t1,2{4,4,4} or 2t{4,4,4}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
- - CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.png
[[4,4,4]] Bitruncated order-4 square tiling honeycomb verf.png
80 runcinated order-4 square
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,3{4,4,4}
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
[[4,4,4]] Runcinated order-4 square tiling honeycomb verf.png
81 runcitruncated order-4 square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,1,3{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
[4,4,4] 80px
82 omnitruncated order-4 square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,2,3{4,4,4}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
[[4,4,4]] 80px
[62] square
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
t1{4,4,4} or r{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
- - CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
[4,4,4] Uniform tiling 44-t0.png
Square tiling
H3 443 FC boundary.png
[63] rectified square
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
t0,2{4,4,4} or rr{4,4,4}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
- CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
[4,4,4] 80px 100px
[66] truncated order-4 square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
t0,1,2{4,4,4} or tr{4,4,4}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
- CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
[4,4,4] 80px
Alternated constructions
# Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Symmetry Vertex figure Picture
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n4.png
Alt
[62] Square
( CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png ) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 44-t0.png
(4.4.4.4)
- - Uniform tiling 44-t1.png
(4.4.4.4)
[1+,4,4,4]
=[4,4,4]
Bitruncated order-4 square tiling honeycomb verf.png H3 443 FC boundary.png
[63] rectified square
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
s2{4,4,4}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
- CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
[4+,4,4] 80px 100px
[77] order-4 square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
- - - CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
[1+,4,4,4]
=[4,4,4]
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
Cube
H3 444 FC boundary.png
[78] truncated order-4 square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
Uniform tiling 44-t12.png
(4.8.8)
- Uniform tiling 44-t12.png
(4.8.8)
- Uniform tiling 44-t1.png
(4.4.4.4)
[1+,4,4,4]
=[4,4,4]
80px
[79] bitruncated order-4 square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
(4.8.8)
- - Uniform tiling 44-t01.png
(4.8.8)
Uniform tiling 44-t012.png
(4.8.8)
[1+,4,4,4]
=[4,4,4]
Bitruncated order-4 square tiling honeycomb verf.png
[81] runcitruncated order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
s2,3{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
[4,4,4] 80px
[83] alternated square
( CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel ultra.pngCDel node.png ) ↔ CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png
hr{4,4,4}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
- - CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngHexahedron.png [4,1+,4,4] Uniform polyhedron-43-t1.png
(4.3.4.3)
[104] quarter order-4 square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch.pngCDel label4.png
q{4,4,4}
[[1+,4,4,4,1+]]
=[[4[4]]]
Paracompact honeycomb 4444 1100 verf.png
Nonsimplectic alternated rectified square tiling
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel ultra.pngCDel node.png
hrr{4,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
- CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t02.png
[((2+,4,4)),4]
Nonsimplectic alternated runcinated order-4 square tiling
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
ht0,3{4,4,4}
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 44-t2.png
CDel node h.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node h.png
Tetrahedron.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Tetrahedron.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
[[(4,4,4,2+)]]
Nonuniform snub order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
s{4,4,4}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
- - CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
[4+,4,4]
Nonuniform runcic snub order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
s3{4,4,4}
[4+,4,4]
Nonuniform bisnub order-4 square tiling
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
2s{4,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
- - CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-h01.png
[[4,4+,4]]
Nonuniform snub square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
sr{4,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
- CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
[(4,4)+,4]
Nonuniform alternated runcitruncated order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
ht0,1,3{4,4,4}
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t02.png
CDel node h.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node h.png
Tetrahedron.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
[((2,4)+,4,4)]
Nonuniform omnisnub order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
ht0,1,2,3{4,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
[[4,4,4]]+

Tridental graphs

[3,41,1] family

There are 11 forms (of which only 4 are not shared with the [4,4,3] family), generated by ring permutations of the Coxeter group: CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
83 alternated square
CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
- - Uniform polyhedron-43-t0.png
(4.4.4)
Uniform tiling 44-t0.png
(4.4.4.4)
Uniform polyhedron-43-t1.png
(4.3.4.3)
84 cantic square
CDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3.4.3.4)
- Uniform polyhedron-43-t01.png
(3.8.8)
Uniform tiling 44-t12.png
(4.8.8)
80px
85 runcic square
CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(4.4.4.4)
- Uniform polyhedron-43-t02.png
(3.4.4.4)
Uniform tiling 44-t0.png
(4.4.4.4)
80px
86 runcicantic square
CDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(4.6.6)
- Uniform polyhedron-43-t012.png
(3.4.4.4)
Uniform tiling 44-t12.png
(4.8.8)
80px
[63] rectified square
CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(4.4.4)
- Uniform polyhedron-43-t0.png
(4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
80px 100px
[64] rectified order-4 octahedral
CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3.4.3.4)
- Uniform polyhedron-43-t1.png
(3.4.3.4)
Uniform tiling 44-t1.png
(4.4.4.4)
80px 100px
[65] order-4 octahedral
CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(4.4.4.4)
- Uniform polyhedron-43-t2.png
(4.4.4.4)
- Uniform tiling 44-t1.png CDel nodes.pngCDel split2-44.pngCDel node 1.png H3 344 CC center.png
[67] truncated order-4 octahedral
CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(4.6.6)
- Uniform polyhedron-43-t12.png
(4.6.6)
Uniform tiling 44-t1.png
(4.4.4.4)
80px
[68] bitruncated square
CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(3.8.8)
- Uniform polyhedron-43-t01.png
(3.8.8)
Uniform tiling 44-t012.png
(4.8.8)
80px
[70] cantellated order-4 octahedral
CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3.4.4.4)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform polyhedron-43-t02.png
(3.4.4.4)
Uniform tiling 44-t02.png

(4.4.4.4)
80px
[73] cantitruncated order-4 octahedral
CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(4.6.8)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform polyhedron-43-t012.png
(4.6.8)
Uniform tiling 44-t012.png
(4.8.8)
80px
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
Alt
Scaliform snub order-4 octahedral
CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
s{3,41,1}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png - - CDel nodes.pngCDel split2-44.pngCDel node h1.png irr. {}v{4}
Nonuniform snub rectified order-4 octahedral
CDel nodes hh.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,41,1}
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Uniform polyhedron-33-t0.png
(3.3.3)
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Uniform tiling 44-snub.png
(3.3.4.3.4)
Uniform polyhedron-33-t2.png
+(3.3.3)

[4,41,1] family

There are 7 forms, (all shared with [4,4,4] family), generated by ring permutations of the Coxeter group: CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.png

# Honeycomb name
Coxeter diagram
Cells by location Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
[62] Square
( CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t1.png
(4.4.4.4)
- Uniform tiling 44-t1.png
(4.4.4.4)
Uniform tiling 44-t1.png
(4.4.4.4)
Uniform tiling 44-t0.png H3 443 FC boundary.png
[62] Square
( CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t0.png
(4.4.4.4)
- Uniform tiling 44-t0.png
(4.4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
Uniform tiling 44-t0.png H3 443 FC boundary.png
[63] rectified square
( CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png) = CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t02.png
(4.4.4.4)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
80px 100px
[66] truncated square
( CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png) = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t012.png
(4.8.8)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform tiling 44-t012.png
(4.8.8)
Uniform tiling 44-t012.png
(4.8.8)
80px
[77] order-4 square
CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
(4.4.4.4)
- Uniform tiling 44-t2.png
(4.4.4.4)
- Uniform tiling 44-t1.png CDel nodes.pngCDel split2-44.pngCDel node 1.png H3 444 FC boundary.png
[78] truncated order-4 square
CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.png
(4.8.8)
- Uniform tiling 44-t12.png
(4.8.8)
Uniform tiling 44-t1.png
(4.4.4.4)
80px
[79] bitruncated order-4 square
CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
(4.8.8)
- Uniform tiling 44-t01.png
(4.8.8)
Uniform tiling 44-t012.png
(4.8.8)
Bitruncated order-4 square tiling honeycomb verf.png
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
Alt
[77] order-4 square
( CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node 1.png) = CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png - CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png - CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
Cube
Uniform tiling 44-t1.png CDel nodes.pngCDel split2-44.pngCDel node 1.png H3 444 FC boundary.png
[78] truncated order-4 square
( CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png) = (CDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png )
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png CDel nodes 11.pngCDel 2.pngCDel node h1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png CDel nodes 11.pngCDel split2-44.pngCDel node.png 80px
[83] Alternated square
CDel nodes.pngCDel split2-44.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel split1-uu.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes 11.pngCDel split2-uu.pngCDel node.png
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png - CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png CDel nodes.pngCDel split2-44.pngCDel node h1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png
Nonuniform Snub order-4 square
CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 4.pngCDel node h.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png - CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png CDel nodes.pngCDel split2-44.pngCDel node h.png
Nonuniform CDel nodes hh.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.png CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png - CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png CDel nodes hh.pngCDel split2-44.pngCDel node.png
Nonuniform CDel nodes hh.pngCDel split2-44.pngCDel node h.pngCDel 4.pngCDel node.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png - CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png CDel nodes hh.pngCDel split2-44.pngCDel node h.png
Nonsimplectic ( CDel nodes hh.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png )
= ( CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel 2a2b-cross.pngCDel nodes 10.png )
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png CDel nodes hh.pngCDel 2x.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png CDel nodes hh.pngCDel split2-44.pngCDel node.png
Nonuniform Snub square
CDel nodes hh.pngCDel split2-44.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel nodes hh.pngCDel 2x.pngCDel node h.png
Uniform polyhedron-33-t0.png
(3.3.3)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel nodes hh.pngCDel split2-44.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
Uniform polyhedron-33-t2.png
+(3.3.3)

[6,31,1] family

There are 11 forms (and only 4 not shared with [6,3,4] family), generated by ring permutations of the Coxeter group: [6,31,1] or CDel nodes.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel nodes.pngCDel split2.pngCDel node.png
87 alternated order-6 cubic
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
- - (∞)
Uniform tiling 63-t2.png
(3.3.3.3.3)
(∞)
Tetrahedron.png
(3.3.3)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
88 cantic order-6 cubic
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Truncated tetrahedron.png
(3.6.6)
80px
89 runcic order-6 cubic
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t0.png
(6.6.6)
- (3)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Tetrahedron.png
(3.3.3)
80px
90 runcicantic order-6 cubic
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t01.png
(3.12.12)
- (2)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Truncated tetrahedron.png
(3.6.6)
80px
[16] order-4 hexagonal
CDel nodes.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(4)
Uniform tiling 63-t0.png
(6.6.6)
- (4)
Uniform tiling 63-t0.png
(6.6.6)
- 80px CDel nodes.pngCDel split2.pngCDel node 1.png
(3.3.3.3)
H3 634 FC boundary.png
[17] rectified order-4 hexagonal
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(2)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform polyhedron-33-t1.png
(3.3.3.3)
80px 100px
[18] rectified order-6 cubic
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3)
- (1)
Uniform tiling 63-t2.png
(3.3.3.3.3)
(6)
Uniform polyhedron-33-t02.png
(3.4.3.4)
80px 100px
[20] truncated order-4 hexagonal
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(2)
Uniform tiling 63-t01.png
(3.12.12)
- (2)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Uniform polyhedron-33-t1.png
(3.3.3.3)
80px
[21] bitruncated order-6 cubic
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t12.png
(6.6.6)
- (1)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
80px
[24] cantellated order-6 cubic
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(2)
Uniform polyhedron 222-t012.png
(4.4.4)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
80px
[27] cantitruncated order-6 cubic
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Uniform polyhedron 222-t012.png
(4.4.4)
(1)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
80px
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel nodes.pngCDel split2.pngCDel node.png
Alt
[141] alternated order-4 hexagonal
CDel nodes.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 10lu.pngCDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
Uniform polyhedron-43-t12.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
Nonuniform bisnub order-4 hexagonal
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Nonuniform snub rectified order-4 hexagonal
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform polyhedron-33-t0.png
(3.3.3)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

Cyclic graphs

[(4,4,3,3)] family

There are 11 forms, 4 unique to this family, generated by ring permutations of the Coxeter group: CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png, with CDel node c1.pngCDel split1-44.pngCDel nodeab c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-43.pngCDel nodeab c1-2.png.

# Honeycomb name
Coxeter diagram
Cells by location Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel split1-44.pngCDel nodes.png
2
CDel nodes.pngCDel split2.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
91 tetrahedral-square
CDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png
- (6)
CDel node.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t0.png
(444)
(8)
CDel nodes 10ru.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t0.png
(333)
(12)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3434)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
92 cyclotruncated square-tetrahedral
CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(444)
CDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t01.png
(488)
CDel nodes 10ru.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t0.png
(333)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(388)
80px
93 cyclotruncated tetrahedral-square
CDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png
(1)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3333)
(1)
CDel node.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t0.png
(444)
(4)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t01.png
(366)
(4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(466)
80px
94 truncated tetrahedral-square
CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
(1)
CDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t01.png
(488)
(1)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t01.png
(366)
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(468)
80px
[64] (CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes.png ) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
rectified order-4 octahedral
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3434)
CDel node.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t02.png
(4444)
CDel nodes 11.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t02.png
(3434)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3434)
80px 100px
[65] ( CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-43.pngCDel nodes 01ld.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
order-4 octahedral
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3333)
- CDel nodes.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t1.png
(3333)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3333)
Uniform tiling 44-t0.png CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png H3 344 CC center.png
[67] (CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes 01ld.png ) = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
truncated order-4 octahedral
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(466)
CDel node.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t02.png
(4444)
CDel nodes 11.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t012.png
(3434)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(466)
80px
[83] alternated square
(CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-43.pngCDel nodes 10lu.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(444)
CDel node 1.pngCDel split1-44.pngCDel nodes.png
Uniform tiling 44-t1.png
(4444)
- CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(444)
Uniform polyhedron-43-t1.png
(4.3.4.3)
[84] cantic square
(CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes 10lu.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(388)
CDel node 1.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t012.png
(488)
CDel nodes 11.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t02.png
(3434)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(388)
80px
[85] runcic square
(CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-43.pngCDel nodes 11.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
CDel node 1.pngCDel split1-44.pngCDel nodes.png
Uniform tiling 44-t1.png
(3434)
CDel nodes.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t1.png
(3333)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
80px
[86] runcicantic square
(CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes 11.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(468)
CDel node 1.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t012.png
(488)
CDel nodes 11.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t012.png
(466)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(468)
80px
# Honeycomb name
Coxeter diagram
Cells by location Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel split1-44.pngCDel nodes.png
2
CDel nodes.pngCDel split2.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Alt
Scaliform snub order-4 octahedral
CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png = CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png - - CDel nodes.pngCDel split2-44.pngCDel node h1.png irr. {}v{4}
Nonuniform CDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node h.png CDel node h.pngCDel split1-44.pngCDel nodes hh.png CDel nodes hh.pngCDel split2.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Nonsimplectic alternated tetrahedral-square
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel branchu 10.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu 01.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node h1.pngCDel split1-44.pngCDel nodes.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

[(4,4,4,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
95 cubic-square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch.png
(8)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
- (6)
Uniform tiling 44-t0.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
(12)
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-t02.png
(3.4.4.4)
96 octahedral-square
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch 10l.png
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
- Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
(4.4.4.4)
97 cyclotruncated cubic-square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch 10l.png
(4)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t0.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
(4)
Uniform tiling 44-t12.png
(4.8.8)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform t12 4443 honeycomb verf.png
98 cyclotruncated square-cubic
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(3)
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
(3)
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform t01 4443 honeycomb verf.png
99 cyclotruncated octahedral-square
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch 11.png
(4)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
80px
100 rectified cubic-square
CDel label4.pngCDel branch 01r.pngCDel 4a4b.pngCDel branch 10l.png
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
(2)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
(2)
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
80px
101 truncated cubic-square
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 10l.png
(1)
Uniform polyhedron-43-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(2)
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
80px
102 truncated octahedral-square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch 11.png
(2)
Uniform polyhedron-43-t012.png
(4.6.8
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t12.png
(4.8.8)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
80px
103 omnitruncated octahedral-square
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 11.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
80px
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Alt
Nonsimplectic alternated cubic-square
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-43.pngCDel node.pngCDel branchu 10.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu 01.png
- Uniform polyhedron-33-t0.png
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 44-t1.png
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-t02.png
(3.4.4.4)
Nonuniform snub octahedral-square
CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2-43.pngCDel node h.png
Uniform polyhedron-43-s012.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-h01.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-h01.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Nonuniform cyclosnub square-cubic
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch.png
Uniform polyhedron-33-t0.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform polyhedron-43-h01.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Nonuniform cyclosnub octahedral-square
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch hh.png
Uniform tiling 44-h01.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-h01.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t0.png
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Nonuniform omnisnub cubic-square
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch hh.png
Uniform polyhedron-43-h01.png
(3.3.3.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-h01.png
(3.3.3.3.4)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Tetrahedron.png
+(3.3.3)

[(4,4,4,4)] family

There are 5 forms, 1 unique, generated by ring permutations of the Coxeter group: CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch.pngCDel label4.png. Repeat constructions are related as: CDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-44.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.png, CDel node c1.pngCDel split1-44.pngCDel nodeab c2.pngCDel split2-44.pngCDel node c1.pngCDel node h0.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node h0.png, and CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c1.pngCDel label4.pngCDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel nodes.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
1
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
104 quarter order-4 square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch 10l.pngCDel label4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t0.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t12.png
(4.8.8)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Paracompact honeycomb 4444 1100 verf.png
[62] square
CDel label4.pngCDel branch 01r.pngCDel 4a4b.pngCDel branch 10l.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
80px H3 443 FC boundary.png
[77] order-4 square
(CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes 10lu.png ) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
- Uniform tiling 44-t0.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
H3 444 FC boundary.png
[78] truncated order-4 square
( CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 10l.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png ) = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
80px
[79] bitruncated order-4 square
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 11.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Bitruncated order-4 square tiling honeycomb verf.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
1
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Alt
[83] alternated square
(CDel node h.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png) = CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png
(6)
Uniform tiling 44-t0.png
(4.4.4.4)
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
(6)
Uniform tiling 44-t0.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
(6)
Uniform tiling 44-t0.png
(4.4.4.4)
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
(6)
Uniform tiling 44-t0.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
(8)
Uniform polyhedron-43-t0.png
(4.4.4)
Uniform polyhedron-43-t1.png
(4.3.4.3)
Nonsimplectic alternated order-4 square
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.pngCDel branchu 10.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu 01.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
-
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Nonsimplectic cantic order-4 square
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel branchu 10.pngCDel split2-44.pngCDel node 1.pngCDel split1-44.pngCDel branchu 01.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png

CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png

CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Nonuniform cyclosnub square
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch.pngCDel label4.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png

CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png

CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Nonuniform snub order-4 square
CDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2-44.pngCDel node.png

CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png

CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Nonuniform bisnub order-4 square
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch hh.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h0.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Tetrahedron.png
+(3.3.3)

[(6,3,3,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
105 tetrahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.png
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
- (4)
Uniform tiling 63-t0.png
(6.6.6)
(6)
Uniform tiling 63-t1.png
(3.6.3.6)
Uniform polyhedron-33-t02.png CDel nodeb 1.pngCDel 3b.pngCDel branch 10l.png
(3.4.3.4)
106 tetrahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.png

Uniform polyhedron-33-t1.png
(3.3.3.3)

Uniform polyhedron-33-t0.png
(3.3.3)
-
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 63-t02.png CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb 1.png
(3.4.6.4)
107 cyclotruncated tetrahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.png
(3)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(1)
Uniform tiling 63-t0.png
(6.6.6)
(3)
Uniform tiling 63-t12.png
(6.6.6)
Uniform t12 6333 honeycomb verf.png
108 cyclotruncated hexagonal-tetrahedral
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.png
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(4)
Uniform tiling 63-t01.png
(3.12.12)
(4)
Uniform tiling 63-t01.png
(3.12.12)
Uniform t01 6333 honeycomb verf.png
109 cyclotruncated tetrahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png
(6)
Uniform polyhedron-33-t01.png
(3.6.6)
(6)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
80px
110 rectified tetrahedral-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.png
(1)
Uniform polyhedron-33-t1.png
(3.3.3.3)
(2)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
80px
111 truncated tetrahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.png
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.png
(4.6.12)
80px
112 truncated tetrahedral-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.png
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t12.png
(6.6.6)
80px
113 omnitruncated tetrahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.png
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Uniform tiling 63-t012.png
(4.6.12)
80px
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
Nonuniform omnisnub tetrahedral-hexagonal
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.png
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
80px

[(6,3,4,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label4.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
114 octahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label4.png
(6)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel label4.png
- (8)
Uniform tiling 63-t0.png
(6.6.6)
CDel label6.pngCDel branch 01.pngCDel 3b.pngCDel nodeb.png
(12)
Uniform tiling 63-t1.png
(3.6.3.6)
CDel label6.pngCDel branch 10.pngCDel 3a.pngCDel nodea.png
80px
115 cubic-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(∞)
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
(∞)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel nodeb.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
- (∞)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png
Uniform tiling 63-t02.png CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb 1.png
(3.4.6.4)
116 cyclotruncated octahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(3)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel nodea 1.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel nodeb.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform tiling 63-t0.png
(6.6.6)
CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb.png
(3)
Uniform tiling 63-t12.png
(6.6.6)
CDel label6.pngCDel branch 10.pngCDel 3a.pngCDel nodea 1.png
80px
117 cyclotruncated hexagonal-octahedral
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel label4.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel nodeb 1.pngCDel 3b.pngCDel branch.pngCDel label4.png
(4)
Uniform tiling 63-t01.png
(3.12.12)
CDel label6.pngCDel branch 01.pngCDel 3b.pngCDel nodeb 1.png
(4)
Uniform tiling 63-t01.png
(3.12.12)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea.png
Uniform t01 6343 honeycomb verf.png
118 cyclotruncated cubic-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(6)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel nodea.pngCDel 3a.pngCDel branch 11.pngCDel label4.png
(6)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel nodeb.pngCDel 3b.pngCDel branch 11.pngCDel label4.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb 1.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png
80px
119 rectified octahedral-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
(2)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel nodeb 1.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
CDel label6.pngCDel branch 01.pngCDel 3b.pngCDel nodeb.png
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
CDel label6.pngCDel branch 01r.pngCDel 3a.pngCDel nodea 1.png
80px
120 truncated octahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel nodea 1.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel nodeb 1.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform tiling 63-t01.png
(3.12.12)
CDel label6.pngCDel branch 11.pngCDel 3b.pngCDel nodeb.png
(2)
Uniform tiling 63-t012.png
(4.6.12)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea 1.png
80px
121 truncated cubic-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel nodea 1.pngCDel 3a.pngCDel branch 11.pngCDel label4.png
(1)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel nodeb.pngCDel 3b.pngCDel branch 11.pngCDel label4.png
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb 1.png
(1)
Uniform tiling 63-t12.png
(6.6.6)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea.png
80px
122 omnitruncated octahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel nodea 1.pngCDel 3a.pngCDel branch 11.pngCDel label4.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel nodeb 1.pngCDel 3b.pngCDel branch 11.pngCDel label4.png
(1)
Uniform tiling 63-t012.png
(4.6.12)
CDel label6.pngCDel branch 11.pngCDel 3b.pngCDel nodeb 1.png
(1)
Uniform tiling 63-t012.png
(4.6.12)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea 1.png
80px
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label4.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
Nonuniform cyclosnub octahedral-hexagonal
CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label4.png
Uniform polyhedron-43-s012.png
(3.3.3.3.3)
CDel nodea h.pngCDel 3a.pngCDel branch h0.pngCDel label4.png
Uniform polyhedron-33-t0.png
(3.3.3)
CDel nodeb.pngCDel 3b.pngCDel branch h0l.pngCDel label4.png
Uniform tiling 333-t1.png
(3.3.3.3.3)
CDel label6.pngCDel branch h0r.pngCDel 3b.pngCDel nodeb.png
Uniform tiling 63-h12.png
(3.3.3.3.3)
CDel label6.pngCDel branch h0.pngCDel 3a.pngCDel nodea h.png
Tetrahedron.png
irr. {3,4}
Nonuniform omnisnub octahedral-hexagonal
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label4.png
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
CDel nodea h.pngCDel 3a.pngCDel branch hh.pngCDel label4.png
Uniform polyhedron-33-s012.png
(3.3.3.3.4)
CDel nodeb h.pngCDel 3b.pngCDel branch hh.pngCDel label4.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel label6.pngCDel branch hh.pngCDel 3b.pngCDel nodeb h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel label6.pngCDel branch hh.pngCDel 3a.pngCDel nodea h.png
Tetrahedron.png
irr. {3,3}
80px

[(6,3,5,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label5.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label5.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
123 icosahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label5.png
(6)
Icosahedron.png
(3.3.3.3.3)
- (8)
Uniform tiling 63-t0.png
(6.6.6)
(12)
Uniform tiling 63-t1.png
(3.6.3.6)
Uniform polyhedron-53-t02.png
3.4.5.4
124 dodecahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(30)
Icosidodecahedron.png
(3.5.3.5)
(20)
Dodecahedron.png
(5.5.5)
- (12)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 63-t02.png
(3.4.6.4)
125 cyclotruncated icosahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(3)
Truncated icosahedron.png
(5.6.6)
(1)
Dodecahedron.png
(5.5.5)
(1)
Uniform tiling 63-t0.png
(6.6.6)
(3)
Uniform tiling 63-t12.png
(6.6.6)
Uniform t12 6353 honeycomb verf.png
126 cyclotruncated hexagonal-icosahedral
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label5.png
(1)
Icosahedron.png
(3.3.3.3.3)
(1)
Icosahedron.png
(3.3.3.3.3)
(5)
Uniform tiling 63-t01.png
(3.12.12)
(5)
Uniform tiling 63-t01.png
(3.12.12)
Uniform t01 6353 honeycomb verf.png
127 cyclotruncated dodecahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
(6)
Truncated dodecahedron.png
(3.10.10)
(6)
Truncated dodecahedron.png
(3.10.10)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
80px
128 rectified icosahedral-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(1)
Icosidodecahedron.png
(3.5.3.5)
(2)
Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
80px
129 truncated icosahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(1)
Truncated icosahedron.png
(5.6.6)
(1)
Small rhombicosidodecahedron.png
(3.5.5.5)
(1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.png
(4.6.12)
80px
130 truncated dodecahedral-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
(2)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Truncated dodecahedron.png
(3.10.10)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t12.png
(6.6.6)
80px
131 omnitruncated icosahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Uniform tiling 63-t012.png
(4.6.12)
80px
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label5.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label5.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
Nonuniform omnisnub icosahedral-hexagonal
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label5.png
Snub dodecahedron cw.png
(3.3.3.3.5)
Snub dodecahedron cw.png
(3.3.3.3.5)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
80px

[(6,3,6,3)] family

There are 6 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label6.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label6.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
132 hexagonal-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label6.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
- Uniform tiling 63-t0.png
(6.6.6)
Uniform tiling 63-t1.png
(3.6.3.6)
Uniform tiling 63-t02.png
(3.4.6.4)
133 cyclotruncated hexagonal-triangular
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label6.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(3)
Uniform tiling 63-t01.png
(3.12.12)
(3)
Uniform tiling 63-t01.png
(3.12.12)
Uniform t01 6363 honeycomb verf.png
134 cyclotruncated triangular-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
80px
135 rectified hexagonal-triangular
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
(1)
Uniform tiling 63-t12.png
(6.6.6)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.png
(4.6.12)
80px
136 truncated hexagonal-triangular
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label6.png
(1)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Uniform tiling 63-t012.png
(4.6.12)
80px
[16] order-4 hexagonal tiling
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
=CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(3)
Uniform tiling 63-t12.png
(6.6.6)
(1)
Uniform tiling 63-t0.png
(6.6.6)
(1)
Uniform tiling 63-t0.png
(6.6.6)
(3)
Uniform tiling 63-t12.png
(6.6.6)
Uniform t12 6363 honeycomb verf.png
(3.3.3.3)
H3 634 FC boundary.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label6.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label6.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
[141] alternated order-4 hexagonal
CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label6.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
Uniform tiling 333-t1.png
(3.3.3.3.3.3)
Uniform tiling 333-t1.png
(3.3.3.3.3.3)
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t1.png
+(3.3.3.3)
Uniform polyhedron-33-t012.png
(4.6.6)
Nonuniform cyclocantisnub hexagonal-triangular
CDel branch hh.pngCDel 6a6b.pngCDel branch 10l.png
Nonuniform cycloruncicantisnub hexagonal-triangular
CDel branch hh.pngCDel 6a6b.pngCDel branch 11.png
Nonuniform snub rectified hexagonal-triangular
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label6.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform polyhedron-33-t0.png
+(3.3.3)
80px

Loop-n-tail graphs

[3,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [3,3[3]] or CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png. 7 are half symmetry forms of [3,3,6]: CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
137 alternated hexagonal
(CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png) = CDel branch hh.pngCDel splitcross.pngCDel branch hh.png
- - Uniform polyhedron-33-t2.png
(3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
138 cantic hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t1.png
(3.3.3.3)
- (2)
Uniform polyhedron-33-t12.png
(3.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
139 runcic hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
80px
140 runcicantic hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t01.png
(3.10.10)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[2] rectified hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t2.png
(3.3.3)
- (1)
Uniform polyhedron-33-t2.png
(3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
80px CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism
100px
[3] rectified order-6 tetrahedral
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(2)
Uniform polyhedron-33-t1.png
(3.3.3.3)
- (2)
Uniform polyhedron-33-t1.png
(3.3.3.3)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
80px CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Hexagonal prism
100px
[4] order-6 tetrahedral
CDel branch.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
(4)
Uniform polyhedron-33-t0.png
(4.4.4)
- (4)
Uniform polyhedron-33-t0.png
(4.4.4)
- Uniform tiling 63-t2.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png H3 336 CC center.png
[8] cantellated order-6 tetrahedral
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t02.png
(3.3.3.3)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-33-t02.png
(3.3.3.3)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[9] bitruncated order-6 tetrahedral
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t12.png
(3.6.6)
- (1)
Uniform polyhedron-33-t12.png
(3.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
80px
[10] truncated order-6 tetrahedral
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(2)
Uniform polyhedron-33-t01.png
(3.10.10)
- (2)
Uniform polyhedron-33-t01.png
(3.10.10)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[14] cantitruncated order-6 tetrahedral
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform tiling 333-t012.png
(6.6.6)
80px
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
Nonuniform snub rectified order-6 tetrahedral
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Trigonal antiprism.png
(3.3.3.3)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform tiling 333-snub.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

[4,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [4,3[3]] or CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png. 7 are half symmetry forms of [4,3,6]: CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
141 alternated order-4 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
- - Uniform polyhedron-43-t2.png
(3.3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform polyhedron-43-t12.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
142 cantic order-4 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node 1.png
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
- (2)
Uniform polyhedron-43-t12.png
(4.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
143 runcic order-4 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
80px
144 runcicantic order-4 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t01.png
(3.8.8)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[16] order-4 hexagonal
CDel branch.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(4)
Uniform polyhedron-43-t0.png
(4.4.4)
- (4)
Uniform polyhedron-43-t0.png
(4.4.4)
- 80px H3 634 FC boundary.png
[17] rectified order-4 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
- (1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
80px 100px
[18] rectified order-6 cubic
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(2)
Uniform polyhedron-43-t1.png
(3.4.3.4)
- (2)
Uniform polyhedron-43-t1.png
(3.4.3.4)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
80px 100px
[21] bitruncated order-4 hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
- (1)
Uniform polyhedron-43-t12.png
(4.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
80px
[22] truncated order-6 cubic
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(2)
Uniform polyhedron-43-t01.png
(3.8.8)
- (2)
Uniform polyhedron-43-t01.png
(3.8.8)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[23] cantellated order-4 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[26] cantitruncated order-4 hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Uniform tiling 333-t012.png
(6.6.6)
80px
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
Nonuniform snub rectified order-4 hexagonal
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Trigonal antiprism.png
(3.3.3.3)
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Uniform tiling 333-snub.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

[5,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [5,3[3]] or CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png. 7 are half symmetry forms of [5,3,6]: CDel node c1.pngCDel 5.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
145 alternated order-5 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
- - Uniform polyhedron-53-t2.png
(3.3.3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform tiling 63-t1.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.3.6)
146 Cantic order-5 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(1)
Uniform polyhedron-53-t1.png
(3.5.3.5)
- (2)
Uniform polyhedron-53-t12.png
(5.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
147 runcic order-5 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t0.png
(5.5.5)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform polyhedron-53-t02.png
(3.4.5.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
80px
148 runcicantic order-5 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[32] rectified order-5 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
(1)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
- (1)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
80px 100px
[33] rectified order-6 dodecahedral
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(2)
Uniform polyhedron-53-t1.png
(3.5.3.5)
- (2)
Uniform polyhedron-53-t1.png
(3.5.3.5)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
80px 100px
[34] Order-5 hexagonal
CDel branch.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(4)
Uniform polyhedron-53-t0.png
(5.5.5)
- (4)
Uniform polyhedron-53-t0.png
(5.5.5)
- 80px H3 635 FC boundary.png
[35] truncated order-6 dodecahedral
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(2)
Uniform polyhedron-53-t01.png
(3.10.10)
- (2)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[38] cantellated order-5 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t02.png
(3.4.5.4)
(2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform polyhedron-53-t02.png
(3.4.5.4)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[39] bitruncated order-5 hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(1)
Uniform polyhedron-53-t12.png
(5.6.6)
- (1)
Uniform polyhedron-53-t12.png
(5.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
80px
[44] cantitruncated order-5 hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Hexagonal prism.png
(6.4.4)
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Uniform tiling 333-t012.png
(6.6.6)
80px
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
Nonuniform snub rectified order-5 hexagonal
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
Uniform polyhedron-53-s012.png
(3.3.3.3.5)
Uniform polyhedron-33-t0.png
(3.3.3)
Uniform polyhedron-53-s012.png
(3.3.3.3.5)
Uniform tiling 333-snub.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

[6,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [6,3[3]] or CDel branch.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png. 7 are half symmetry forms of [6,3,6]: CDel node c1.pngCDel 6.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
149 runcic order-6 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t0.png
(6.6.6)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
80px
150 runcicantic order-6 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[1] hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1)
Uniform tiling 63-t12.png
(6.6.6)
- (1)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
Order-3 hexagonal tiling honeycomb verf.png H3 634 FC boundary.png
[46] order-6 hexagonal
CDel branch.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(4)
Uniform tiling 63-t0.png
(6.6.6)
- (4)
Uniform tiling 63-t0.png
(6.6.6)
- Uniform tiling 333-t0.png H3 636 FC boundary.png
[47] rectified order-6 hexagonal
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(2)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
80px 100px
[47] rectified order-6 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
- (1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
80px 100px
[48] truncated order-6 hexagonal
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(2)
Uniform tiling 63-t01.png
(3.12.12)
- (2)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[49] cantellated order-6 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
80px
[51] cantitruncated order-6 hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t012.png
(4.6.12)
(1)
Uniform tiling 333-t012.png
(6.6.6)
80px
[54] triangular tiling honeycomb
( CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
- - Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform tiling 63-t12.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(6.6.6)
H3 363 FC boundary.png
[55] cantic order-6 hexagonal
( CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png ) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
80px 100px
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
[54] triangular tiling honeycomb
( CDel branch.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 10lu.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
- Uniform tiling 333-t1.png
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
- Uniform tiling 333-t012.png Uniform tiling 63-t12.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(6.6.6)
H3 363 FC boundary.png
[137] alternated hexagonal
( CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png ) = ( CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png )
Uniform tiling 63-h12.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
- Uniform tiling 63-h12.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Uniform tiling 333-snub.png
CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform polyhedron-33-t12.png
+(3.6.6)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
[47] rectified order-6 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
- Uniform tiling 63-t1.png
(3.6.3.6)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
80px
[55] cantic order-6 hexagonal
( CDel branch 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png ) = ( CDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.pngCDel node 1.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.png ) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
80px 100px
Nonuniform snub rectified order-6 hexagonal
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel branch hh.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.3)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform tiling 333-snub.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

Multicyclic graphs

[3[ ]×[ ]] family

There are 8 forms, 1 unique, generated by ring permutations of the Coxeter group: CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png. Two are duplicated as CDel node c1.pngCDel split1-44.pngCDel branch c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png, two as CDel node c3.pngCDel split1-44.pngCDel branch c1-2.pngCDel split2.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png, and three as CDel node c2.pngCDel split1.pngCDel branch c1.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel branch.pngCDel split2.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
2
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3
CDel node.pngCDel split1.pngCDel branch.png
151 Quarter order-4 hexagonal
CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel branch 10ru.pngCDel split2.pngCDel node.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t01.png
CDel node 1.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t02.png
80px
[17] rectified order-4 hexagonal
CDel node.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel branch 11.pngCDel split2.pngCDel node.png
Uniform tiling 333-t01.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t1.png
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t12.png
60px CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
(4.4.4)
100px
[18] rectified order-6 cubic
CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel branch.pngCDel split2.pngCDel node 1.png
Uniform tiling 333-t2.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t02.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t02.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t0.png
60px CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
(6.4.4)
100px
[21] bitruncated order-6 cubic
CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel branch 11.pngCDel split2.pngCDel node 1.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t012.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
60px
[87] alternated order-6 cubic
CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
- CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t0.png
Uniform tiling 333-t01.png CDel branch 11.pngCDel split2.pngCDel node.png
(3.6.3.6)
[88] cantic order-6 cubic
CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel branch 11.pngCDel split2.pngCDel node.png
Uniform tiling 333-t01.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t01.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t01.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
60px
[141] alternated order-4 hexagonal
CDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 10lu.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
CDel branch 10ru.pngCDel split2.pngCDel node.png
Uniform tiling 333-t0.png
- CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t1.png
CDel node.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t1.png
Uniform polyhedron-33-t012.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
[142] cantic order-4 hexagonal
CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
CDel branch 10ru.pngCDel split2.pngCDel node 1.png
Uniform tiling 333-t02.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t02.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t012.png
CDel node 1.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t01.png
80px
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel branch.pngCDel split2.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
2
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3
CDel node.pngCDel split1.pngCDel branch.png
Alt
Nonuniform bisnub order-6 cubic
CDel node h.pngCDel split1.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png
Uniform tiling 333-snub.png
CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform polyhedron-33-s012.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-s012.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 333-snub.png
CDel node h.pngCDel split1.pngCDel branch hh.png
Tetrahedron.png
irr. {3,3}

[3[3,3]] family

There are 4 forms, 0 unique, generated by ring permutations of the Coxeter group: CDel branch.pngCDel splitcross.pngCDel branch.png. They are repeated in four families: CDel node c3.pngCDel splitsplit1.pngCDel branch4 c1-2.pngCDel splitsplit2.pngCDel node c3.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png (index 2 subgroup), CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node h0.png (index 4 subgroup), CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c1.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png (index 6 subgroup), and CDel branch c1.pngCDel splitcross.pngCDel branch c1.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png (index 24 subgroup).

# Name
Coxeter diagram
0 1 2 3 vertex figure Picture
[1] hexagonal
CDel branch 11.pngCDel splitcross.pngCDel branch 11.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Order-3 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3}
Error creating thumbnail: convert: improper image header `/usr/local/www/mediawiki/w/images/7/7a/H3_633_FC_boundary.png' @ error/png.c/ReadPNGImage/4192.
convert: no images defined `/tmp//transform_d0a56588e785.png' @ error/convert.c/ConvertImageCommand/3229.

Error code: 1
[47] rectified order-6 hexagonal
CDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
60px CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
t{2,3}
100px
[54] triangular tiling honeycomb
( CDel branch.pngCDel splitcross.pngCDel branch 10l.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 10lu.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
- Uniform tiling 333-t1.png
CDel node.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t2.png
CDel node.pngCDel split1.pngCDel branch 01ld.png
Uniform tiling 333-t012.png CDel node 1.pngCDel split1.pngCDel branch 11.png
t{3[3]}
H3 363 FC boundary.png
[55] rectified triangular
CDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node 1.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
60px CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
t{2,3}
100px
# Name
Coxeter diagram
0 1 2 3 Alt vertex figure Picture
[137] alternated hexagonal
( CDel branch hh.pngCDel splitcross.pngCDel branch hh.pngCDel node h1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png ) = CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-snub.png
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform tiling 333-snub.png
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform tiling 333-snub.png
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform tiling 333-snub.png
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3}
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(4.6.6)

Summary enumerations by family

Linear graphs

Paracompact hyperbolic enumeration
Group Extended
symmetry
Honeycombs Chiral
extended
symmetry
Alternation honeycombs
{\bar{R}}_3
[4,4,3]
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
[4,4,3]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 3.pngCDel node c4.png
15 CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
[1+,4,1+,4,3+] (6) CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png (↔ CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png)
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png (↔ CDel node 1.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel ultra.pngCDel node.png)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png | CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
[4,4,3]+ (1) CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
{\bar{N}}_3
[4,4,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
[4,4,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 4.pngCDel node c4.png
3 CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png [1+,4,1+,4,1+,4,1+] (3) CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png (↔ CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png | CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
[4,4,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node h0.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
(3) CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png [1+,4,1+,4,1+,4,1+] (3) CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png (↔ CDel node 1.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel ultra.pngCDel node.png)
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png | CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
[2+[4,4,4]]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c1.png
3 CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png [2+[(4,4+,4,2+)]] (2) CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png | CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
[2+[4,4,4]]+ (1) CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
{\bar{V}}_3
[6,3,3]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[6,3,3]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c4.png
15 CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
[1+,6,(3,3)+] (2) CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png (↔ CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
[6,3,3]+ (1) CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
{\bar{BV}}_3
[6,3,4]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[6,3,4]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node c4.png
15 CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
[1+,6,3+,4,1+] (6) CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png (↔ CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png (↔ CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png | CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png | CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
[6,3,4]+ (1) CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
{\bar{HV}}_3
[6,3,5]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[6,3,5]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 5.pngCDel node c4.png
15 CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png | CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
[1+,6,(3,5)+] (2) CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png (↔ CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
[6,3,5]+ (1) CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
{\bar{Y}}_3
[3,6,3]
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
[3,6,3]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node c3.pngCDel 3.pngCDel node c4.png
5 CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
[3,6,3]
CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1) CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png [2+[3+,6,3+]] (1) CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
[2+[3,6,3]]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c1.png
3 CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png [2+[3,6,3]]+ (1) CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
{\bar{Z}}_3
[6,3,6]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
[6,3,6]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node c4.png
6 CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
[1+,6,3+,6,1+] (2) CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png (↔ CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
[2+[6,3,6]]
CDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node h0.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1) CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png [2+[(6,3+,6,2+)]] (2) CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
[2+[6,3,6]]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node c1.png
2 CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.png
[2+[6,3,6]]+ (1) CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png

Tridental graphs

Paracompact hyperbolic enumeration
Group Extended
symmetry
Honeycombs Chiral
extended
symmetry
Alternation honeycombs
{\bar{DV}}_3
[6,31,1]
CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png
[6,31,1] 4 CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
[1[6,31,1]]=[6,3,4]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.pngCDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png
(7) CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.png | CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 11.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 11.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png [1[1+,6,31,1]]+ (2) CDel node h1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png (↔ CDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png)
CDel node.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
[1[6,31,1]]+=[6,3,4]+ (1) CDel node h.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
{\bar{O}}_3
[3,41,1]
CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png
[3,41,1] 4 CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 10lu.png | CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 10lu.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png [3+,41,1]+ (2) CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes h0l.pngCDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel split1-44.pngCDel nodes h0l.png
[1[3,41,1]]=[3,4,4]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1-44.pngCDel nodeab c3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 4.pngCDel node h0.png
(7) CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png | CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png | CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png [1[3+,41,1]]+ (2) CDel node h.pngCDel 3.pngCDel node h.pngCDel split1-44.pngCDel nodes.png | CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes hh.png
[1[3,41,1]]+ (1) CDel node h.pngCDel 3.pngCDel node h.pngCDel split1-44.pngCDel nodes hh.png
{\bar{M}}_3
[41,1,1]
CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png
[41,1,1] 0 (none)
[1[41,1,1]]=[4,4,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1-44.pngCDel nodeab c3.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 4.pngCDel node h0.png
(4) CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png | CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png [1[1+,4,1+,41,1]]+=[(4,1+,4,1+,4,2+)] (4) CDel node h1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png (↔ CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.png)
CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes hh.png | CDel node h.pngCDel 4.pngCDel node h.pngCDel split1-44.pngCDel nodes.png | CDel node.pngCDel 4.pngCDel node h.pngCDel split1-44.pngCDel nodes hh.png
[3[41,1,1]]=[4,4,3]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1-44.pngCDel nodeab c1.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
(3) CDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png | CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png [3[1+,41,1,1]]+=[1+,4,1+,4,3+] (2) CDel node.pngCDel 4.pngCDel node h1.pngCDel split1-44.pngCDel nodes.png (↔ CDel node 1.pngCDel split1-uu.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes 11.pngCDel split2-uu.pngCDel node.png)
CDel node h.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes hh.png
[3[41,1,1]]+=[4,4,3]+ (1) CDel node h.pngCDel 4.pngCDel node h.pngCDel split1-44.pngCDel nodes hh.png

Cyclic graphs

Paracompact hyperbolic enumeration
Group Extended
symmetry
Honeycombs Chiral
extended
symmetry
Alternation honeycombs
{\widehat{CR}}_3
[(4,4,4,3)]
CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.png
[(4,4,4,3)] 6 CDel label4.pngCDel branch 10r.pngCDel 4-4.pngCDel branch.png | CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch 10l.png | CDel label4.pngCDel branch 01r.pngCDel 4-4.pngCDel branch 10l.png | CDel label4.pngCDel branch 10r.pngCDel 4-4.pngCDel branch 10l.png | CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch 10l.png | CDel label4.pngCDel branch 10r.pngCDel 4-4.pngCDel branch 11.png [(4,1+,4,1+,4,3+)] (2) CDel label4.pngCDel branch h0r.pngCDel 4-4.pngCDel branch.pngCDel branchu 10.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu 01.png
CDel label4.pngCDel branch h0r.pngCDel 4-4.pngCDel branch hh.png
[2+[(4,4,4,3)]]
CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c2.png
3 CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch.png | CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch 11.png | CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch 11.png [2+[(4,4+,4,3+)]] (2) CDel label4.pngCDel branch hh.pngCDel 4-4.pngCDel branch.png | CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch hh.png
[2+[(4,4,4,3)]]+ (1) CDel label4.pngCDel branch hh.pngCDel 4-4.pngCDel branch hh.png
{\widehat{RR}}_3
[4[4]]
CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.pngCDel label4.png
[4[4]] (none)
[2+[4[4]]]
CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c2.pngCDel label4.png
1 CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch.pngCDel label4.png [2+[(4+,4)[2]]] (1) CDel label4.pngCDel branch hh.pngCDel 4-4.pngCDel branch.pngCDel label4.png
[1[4[4]]]=[4,41,1]
CDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-44.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.png
(2) CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.png CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2-44.pngCDel node.png [(1+,4)[4]] (2) CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.pngCDel branchu 10.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu 01.png
CDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2-44.pngCDel node.png
[2[4[4]]]=[4,4,4]
CDel node c1.pngCDel split1-44.pngCDel nodeab c2.pngCDel split2-44.pngCDel node c1.pngCDel node h0.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node h0.png
(1) CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node 1.png [2+[(1+,4,4)[2]]] (1) CDel node h.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node h.png
[(2+,4)[4[4]]]=[2+[4,4,4]]
CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c1.pngCDel label4.png = CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel nodes.png
(1) CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch 11.pngCDel label4.png [(2+,4)[4[4]]]+
= [2+[4,4,4]]+
(1) CDel label4.pngCDel branch hh.pngCDel 4-4.pngCDel branch hh.pngCDel label4.png
{\widehat{AV}}_3
[(6,3,3,3)]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.png
[(6,3,3,3)] 6 CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.png | CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.png | CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.png
[2+[(6,3,3,3)]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.png
3 CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.png | CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.png [2+[(6,3,3,3)]]+ (1) CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.png
{\widehat{BV}}_3
[(3,4,3,6)]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
[(3,4,3,6)] 6 CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label4.png | CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png [(3+,4,3+,6)] (1) CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label4.png
[2+[(3,4,3,6)]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label4.png
3 CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png | CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png [2+[(3,4,3,6)]]+ (1) CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label4.png
{\widehat{HV}}_3
[(3,5,3,6)]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[(3,5,3,6)] 6 CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label5.png | CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png | CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png | CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
[2+[(3,5,3,6)]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label5.png
3 CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label5.png | CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png [2+[(3,5,3,6)]]+ (1) CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label5.png
{\widehat{VV}}_3
[(3,6)[2]]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png
[(3,6)[2]] 2 CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label6.png | CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
[2+[(3,6)[2]]]
CDel label6.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c2-1.pngCDel label6.png
1 CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
[2+[(3,6)[2]]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label6.png
1 CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label6.png
[2+[(3,6)[2]]]
CDel label6.pngCDel branch c1-0.pngCDel 3ab.pngCDel branch c1-0.pngCDel label6.png = CDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(1) CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png [2+[(3+,6)[2]]] (1) CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label6.png
[(2,2)+[(3,6)[2]]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c1.pngCDel label6.png
1 CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label6.png [(2,2)+[(3,6)[2]]]+ (1) CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label6.png
Paracompact hyperbolic enumeration
Group Extended
symmetry
Honeycombs Chiral
extended
symmetry
Alternation honeycombs
{\widehat{BR}}_3
[(3,3,4,4)]
CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png
[(3,3,4,4)] 4 CDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png | CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png | CDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png | CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png
[1[(4,4,3,3)]]=[3,41,1]
CDel node c1.pngCDel split1-44.pngCDel nodeab c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-43.pngCDel nodeab c1-2.png
(7) CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png | CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.png | CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.png | CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.png | CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.png | CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png | CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png [1[(3,3,4,1+,4)]]+
= [3+,41,1]+
(2) CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png (= CDel branchu 10.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu 01.png)
CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
[1[(3,3,4,4)]]+
= [3,41,1]+
(1) CDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
{\bar{DP}}_3
[3[ ]x[ ]]
CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png
[3[ ]x[ ]] 1 CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
[1[3[ ]x[ ]]]=[6,31,1]
CDel node c1.pngCDel split1-44.pngCDel branch c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png
(2) CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png | CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.png
[1[3[ ]x[ ]]]=[4,3[3]]
CDel node c3.pngCDel split1-44.pngCDel branch c1-2.pngCDel split2.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png
(2) CDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png | CDel node 1.pngCDel split1.pngCDel branch 10l.pngCDel split2.pngCDel node 1.png
[2[3[ ]x[ ]]]=[6,3,4]
CDel node c2.pngCDel split1.pngCDel branch c1.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.png
(3) CDel node.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.png | CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node 1.png | CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node 1.png [2[3[ ]x[ ]]]+
=[6,3,4]+
(1) CDel node h.pngCDel split1.pngCDel branch hh.pngCDel split2.pngCDel node h.png
{\bar{PP}}_3
[3[3,3]]
CDel branch.pngCDel splitcross.pngCDel branch.png
CDel node.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.png
[3[3,3]] 0 (none)
[1[3[3,3]]]=[6,3[3]]
CDel node c3.pngCDel splitsplit1.pngCDel branch4 c1-2.pngCDel splitsplit2.pngCDel node c3.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png
0 (none)
[3[3[3,3]]]=[3,6,3]
CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c1.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png
(2) CDel node 1.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.png | CDel node 1.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.png
[2[3[3,3]]]=[6,3,6]
CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node h0.png
(1) CDel node 1.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node 1.png
[(3,3)[3[3,3]]]=[6,3,3]
CDel branch c1.pngCDel splitcross.pngCDel branch c1.png = CDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1) CDel branch 11.pngCDel splitcross.pngCDel branch 11.png [(3,3)[3[3,3]]]+
= [6,3,3]+
(1) CDel branch hh.pngCDel splitcross.pngCDel branch hh.png

Loop-n-tail graphs

Symmetry in these graphs can be doubled by adding a mirror: [1[n,3[3]]] = [n,3,6]. Therefore ring-symmetry graphs are repeated in the linear graph families.

Paracompact hyperbolic enumeration
Group Extended
symmetry
Honeycombs Chiral
extended
symmetry
Alternation honeycombs
{\bar{P}}_3
[3,3[3]]
CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png
[3,3[3]] 4 CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 10lu.png | CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 10lu.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[1[3,3[3]]]=[3,3,6]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(7) CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 11.png [1[3,3[3]]]+
= [3,3,6]+
(1) CDel node h.pngCDel 3.pngCDel node h.pngCDel split1.pngCDel branch hh.png
{\bar{BP}}_3
[4,3[3]]
CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png
[4,3[3]] 4 CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 10lu.png | CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 10lu.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[1[4,3[3]]]=[4,3,6]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(7) CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 11.png [1+,4,(3[3])+] (2) CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png
CDel node.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel branch hh.png
[4,3[3]]+ (1) CDel node h.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel branch hh.png
{\bar{HP}}_3
[5,3[3]]
CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png
[5,3[3]] 4 CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch 10lu.png | CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch 10lu.png | CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[1[5,3[3]]]=[5,3,6]
CDel node c1.pngCDel 5.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(7) CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 11.png [1[5,3[3]]]+
= [5,3,6]+
(1) CDel node h.pngCDel 5.pngCDel node h.pngCDel split1.pngCDel branch hh.png
{\bar{VP}}_3
[6,3[3]]
CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png
[6,3[3]] 2 CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 10lu.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[6,3[3]] = (2) (CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 10lu.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png) | (CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png)
[(3,3)[1+,6,3[3]]]=[6,3,3]
CDel node h0.pngCDel 6.pngCDel node c1.pngCDel split1.pngCDel branch c1.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch c1.pngCDel splitcross.pngCDel branch c1.png
(1) CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 11.png [(3,3)[1+,6,3[3]]]+ (1) CDel node.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel branch hh.png
[1[6,3[3]]]=[6,3,6]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(6) CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch.png | CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 11.png | CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 11.png [3[1+,6,3[3]]]+
= [3,6,3]+
(1) CDel node h1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel node 1.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.png (= CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png )
[1[6,3[3]]]+
= [6,3,6]+
(1) CDel node h.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel branch hh.png

See also

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References