Order-4 square tiling honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Order-4 square tiling honeycomb
H3 444 FC boundary.png
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols {4,4,4}
h{4,4,4} ↔ {4,41,1}
{4[4]}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel split1-uu.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-uu.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 4sg.pngCDel node g.pngCDel branchu.pngCDel split2-44.pngCDel node 1.pngCDel split1-44.pngCDel branchu.png
CDel node 1.pngCDel 4.pngCDel node g.pngCDel 4sg.pngCDel node g.pngCDel 4.pngCDel node.pngCDel branchu 10.pngCDel 2.pngCDel branchu 10.pngCDel 2.pngCDel branchu 10.pngCDel 2.pngCDel branchu 10.png
Cells {4,4}
Square tiling uniform coloring 1.png Square tiling uniform coloring 7.png Square tiling uniform coloring 8.png Square tiling uniform coloring 9.png
Faces Square {4}
Edge figure Square {4}
Vertex figure Square tiling, {4,4}
Square tiling uniform coloring 1.png Square tiling uniform coloring 7.png Square tiling uniform coloring 8.png Square tiling uniform coloring 9.png
Dual Self-dual
Coxeter groups [4,4,4]
[41,1,1]
[4[4]]
Properties Regular, quasiregular

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

In the geometry of hyperbolic 3-space, the order-4 square tiling honeycomb, is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {4,4,4}, has four square tilings, {4,4} around each edge, and infinite square tilings around each vertex in an square tiling {4,4} vertex arrangement.[1]

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry

It has many reflective symmetry constructions, CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png as a regular honeycomb, CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png with alternate types (colors) of square tilings, and CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.png with 3 types (colors) of square tilings, with a ratio of 2:1:1. Two more half symmetry construction with pyramidal domains have [4,4,1+,4] symmetry: CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png, and CDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png.

There are two high index subgroups, both index 8: [4,4,4*] ↔ [(4,4,4,4,1+)] exists with a pyramidal fundamental domain, [((4,∞,4)),((4,∞,4))] or CDel branchu.pngCDel split2-44.pngCDel node 1.pngCDel split1-44.pngCDel branchu.png, and secondly [4,4*,4], with 4 orthogonal sets of ultraparallel mirrors in an octahedral fundamental domain: CDel branchu 10.pngCDel 2.pngCDel branchu 10.pngCDel 2.pngCDel branchu 10.pngCDel 2.pngCDel branchu 10.png.

Images

It is analogous to the 2D hyperbolic infinite-order apeirogonal tiling, {∞,∞} with infinite apeirogonal faces and all vertices are on the ideal surface.

H2 tiling 2ii-4.png

This honeycomb contains CDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node 1.png, CDel node 1.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png that tile 2-hypercycle surfaces, similar to these paracompact tilings:

H2 tiling 24i-1.png H2 tiling 24i-4.png

Related polytopes and honeycombs

It is one of 15 regular hyperbolic honeycombs in 3-space, 11 of which like this one are paracompact, with infinite cells or vertex figures.

There are nine uniform honeycombs in the [4,4,4] Coxeter group family, including this regular form.

It is a part of a sequence of honeycombs with a square tiling vertex figure:

<templatestyles src="Template:Hidden begin/styles.css"/>
{p,4,4} honeycombs
{p,4,4}
Space E3 H3
Form Affine Paracompact Noncompact
Name {2,4,4} {3,4,4} {4,4,4} {5,4,4} {6,4,4}... {∞,4,4}
Coxeter
CDel node 1.pngCDel p.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel p.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel p.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel 2.pngCDel nodes.pngCDel iaib.pngCDel nodes.png
CDel node 1.pngCDel 2.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-55.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
 
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-66.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel split1-ii.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel nodes 11.pngCDel iaib-cross.pngCDel nodes.pngCDel split2-44.pngCDel node.png
Image Order-4 square hosohedral honeycomb-sphere.png H3 344 CC center.png H3 444 FC boundary.png
Cells Spherical square hosohedron2.png
{2,4}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Square tiling uniform coloring 1.png
{4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 245-1.png
{5,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 246-1.png
{6,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
H2 tiling 24i-1.png
{∞,4}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png

It is a part of a sequence of honeycombs with square tiling cells:

Rectified order-4 square tiling honeycomb

The rectified order-4 hexagonal tiling honeycomb, t1{4,4,4}, CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png has square tiling facets, with a cube vertex figure. It is the same as the regular square tiling honeycomb, {4,4,3}, CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png.

Truncated order-4 square tiling honeycomb

Truncated order-4 square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t{4,4,4} or t0,1{4,4,4}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 4sg.pngCDel node g.pngCDel branchu 11.pngCDel split2-44.pngCDel node 1.pngCDel split1-44.pngCDel branchu 11.png
Cells {4,4} Uniform tiling 44-t0.png
t{4,4} Uniform tiling 44-t01.png
Faces square {4}
Vertex figure 80px
square pyramid
Coxeter groups [4,4,4]
[41,1,1]
Properties Vertex-transitive

The truncated order-4 square tiling honeycomb, t0,1{4,4,4}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png has square tiling and truncated square tiling facets, with a square pyramid vertex figure.

Bitruncated order-4 square tiling honeycomb

Bitruncated order-4 square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols 2t{4,4,4} or t1,2{4,4,4}
Coxeter diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel branch 11.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Cells t{4,4} Uniform tiling 44-t01.png Uniform tiling 44-t012.png
Faces square {4}, octagon {8}
Vertex figure Bitruncated order-4 square tiling honeycomb verf.png
tetragonal disphenoid
Coxeter groups [[4,4,4]]
[41,1,1]
[4[4]]
Properties Vertex-transitive, edge-transitive, cell-transitive

The bitruncated order-4 square tiling honeycomb, t1,2{4,4,4}, CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png has truncated square tiling facets, with a tetragonal disphenoid vertex figure.

Cantellated order-4 square tiling honeycomb

The cantellated order-4 square tiling honeycomb, CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png is the same thing as the rectified square tiling honeycomb, CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png.

Cantitruncated order-4 square tiling honeycomb

The cantitruncated order-4 square tiling honeycomb, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png is the same thing as the truncated square tiling honeycomb, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png.

Runcinated order-4 square tiling honeycomb

Runcinated order-4 square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t0,3{4,4,4}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes 11.png
CDel node 1.pngCDel 4.pngCDel node g.pngCDel 4sg.pngCDel node g.pngCDel 4.pngCDel node 1.pngCDel branchu 11.pngCDel 2.pngCDel branchu 11.pngCDel 2.pngCDel branchu 11.pngCDel 2.pngCDel branchu 11.png
Cells {4,4} Uniform tiling 44-t0.png
{4,3} Uniform polyhedron-43-t0.png
Faces square {4}
Vertex figure Runcinated order-4 square tiling honeycomb verf.png
square antiprism
Coxeter groups [[4,4,4]]
Properties Vertex-transitive, edge-transitive

The runcinated order-4 square tiling honeycomb, t0,3{4,4,4}, CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png has square tiling and cube facets, with a square antiprism vertex figure.

Runcitruncated order-4 square tiling honeycomb

Runcitruncated order-4 square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t0,1,3{4,4,4}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes 11.png
Cells t{4,4} Uniform tiling 44-t01.png

rr{4,4} Uniform tiling 44-t02.png
{4,3} Uniform polyhedron-43-t0.png
{8}x{} Octagonal prism.png

Faces square {4}
Octagon {8}
Vertex figure 80px
square pyramid
Coxeter groups [4,4,4]
Properties Vertex-transitive

The runcitruncated order-4 square tiling honeycomb, t0,1,3{4,4,4}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png has square tiling, truncated square tiling and cube facets, with a square pyramid vertex figure.

Omnitruncated order-4 square tiling honeycomb

Omnitruncated order-4 square tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t0,1,2,3{4,4,4}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells {4,4} Uniform tiling 44-t012.png
{8}x{} Octagonal prism.png
Faces square {4}
Octagon {8}
Vertex figure 80px
Phyllic disphenoid
Coxeter groups [[4,4,4]]
Properties Vertex-transitive

The omnitruncated order-4 square tiling honeycomb, t0,1,2,3{4,4,4}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png has truncated square tiling and octagonal prism facets, with a tetrahedron vertex figure.

Quarter order-4 square tiling honeycomb

The quarter order-4 square tiling honeycomb, q{4,4,4}, CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png has truncated square tiling and octagonal prism facets, with a tetrahedron vertex figure.

Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
1
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
quarter order-4 square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch 10l.pngCDel label4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t0.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t12.png
(4.8.8)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Paracompact honeycomb 4444 1100 verf.png

See also

References

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />
  • Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III