Zipf–Mandelbrot law
Parameters | (integer) (real) (real) |
---|---|
Support | |
pmf | |
CDF | |
Mean | |
Mode | |
Entropy |
In probability theory and statistics, the Zipf–Mandelbrot law is a discrete probability distribution. Also known as the Pareto-Zipf law, it is a power-law distribution on ranked data, named after the linguist George Kingsley Zipf who suggested a simpler distribution called Zipf's law, and the mathematician Benoit Mandelbrot, who subsequently generalized it.
The probability mass function is given by:
where is given by:
which may be thought of as a generalization of a harmonic number. In the formula, is the rank of the data, and and are parameters of the distribution. In the limit as approaches infinity, this becomes the Hurwitz zeta function . For finite and the Zipf–Mandelbrot law becomes Zipf's law. For infinite and it becomes a Zeta distribution.
Applications
The distribution of words ranked by their frequency in a random text corpus is approximated by a power-law distribution, known as Zipf's law.
If one plots the frequency rank of words contained in a moderately sized corpus of text data versus the number of occurrences or actual frequencies, one obtains a power-law distribution, with exponent close to one (but see Powers, 1998 and Gelbukh & Sidorov, 2001). Zipf's law implicitly assumes a fixed vocabulary size, but the Harmonic series with s=1 does not converge, while the Zipf-Mandelbrot generalization with s>1 does. Furthermore, there is evidence that the closed class of functional words that define a language obeys a Zipf-Mandelbrot distribution with different parameters from the open classes of contentive words that vary by topic, field and register.[1]
In ecological field studies, the relative abundance distribution (i.e. the graph of the number of species observed as a function of their abundance) is often found to conform to a Zipf–Mandelbrot law.[2]
Within music, many metrics of measuring "pleasing" music conform to Zipf–Mandelbrot distributions.[3]
Notes
References
- Lua error in package.lua at line 80: module 'strict' not found. Reprinted as
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.