List of numeral systems
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Lua error in package.lua at line 80: module 'strict' not found.
-
This list is incomplete; you can help by expanding it.
This is a list of numeral systems, that is, writing systems for expressing numbers.
By culture
Name | Base | Sample | Approx. first appearance | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Babylonian numerals | 60 | 3100 BC | |||||||||||||||||
Egyptian numerals | 10 |
or
|
3000 BC | ||||||||||||||||
Aegean numerals | 10 | ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ก ๐ข ๐ฃ ๐ค ๐ฅ ๐ฆ ๐ง ๐จ ๐ฉ ๐ช ๐ซ ๐ฌ ๐ญ ๐ฎ ๐ฏ ๐ฐ ๐ฑ ๐ฒ ๐ณ |
c1500 BC | ||||||||||||||||
Maya numerals | 20 | <15th century | |||||||||||||||||
Muisca numerals | 20 | <15th century | |||||||||||||||||
Chinese numerals, Japanese numerals, Korean numerals (Sino-Korean) | 10 | ใ/้ถ ไธ ไบ ไธ ๅ ไบ ๅ ญ ไธ ๅ ซ ไน ๅ | |||||||||||||||||
Roman numerals | 10 | N โ โ ก โ ข โ ฃ โ ค โ ฅ โ ฆ โ ง โ จ โ ฉ L C D M |
1000 BC | ||||||||||||||||
Hebrew numerals | 10 | ื ื ื ื ื ื ื ื ื ื ื ื ื ื ืก ืข ืค ืฆ |
800 BC | ||||||||||||||||
Indian Numerals | 10 | Tamil เฏฆ เฏง เฏจ เฏฉ เฏช เฏซ เฏฌ เฏญ เฏฎ เฏฏ
Devanagari 0 เฅง เฅจ เฅฉ เฅช เฅซ เฅฌ เฅญ เฅฎ เฅฏ |
750 BC โ 690 BC | ||||||||||||||||
Greek numerals | 10 | ล ฮฑ ฮฒ ฮณ ฮด ฮต ฯ ฮถ ฮท ฮธ ฮน ฮฟ ฮสน ฮสน ฮสน ฮสน ฮสน ฯสน ฮสน ฮสน ฮสน |
Before 5th century BC | ||||||||||||||||
Chinese rod numerals | 10 | ๐ ๐ก ๐ข ๐ฃ ๐ค ๐ฅ ๐ฆ ๐ง ๐จ ๐ฉ | 1st century | ||||||||||||||||
Eastern Arabic numerals | 10 | ูฉ ูจ ูง ูฆ ูฅ ูค ูฃ ูข ูก ู | 8th century | ||||||||||||||||
Western Arabic numerals | 10 | 0 1 2 3 4 5 6 7 8 9 | 9th century | ||||||||||||||||
Thai numerals | 10 | เน เน เน เน เน เน เน เน เน เน | |||||||||||||||||
John Napier's Location arithmetic | 2 | a b ab c ac bc abc d ad bd abd cd acd bcd abcd | 1617 in Rabdology, a non-positional binary system | ||||||||||||||||
Abjad numerals | 10 | ุบ ุธ ุถ ุฐ ุฎ ุซ ุช ุด ุฑ ู ุต ู ุน ุณ ู ู ู ู ู ุท ุญ ุฒ ู ูู ุฏ ุฌ ุจ ุง | |||||||||||||||||
Burmese numerals | 10 | แ แ แ แ แ แ แ แ แ แ |
By type of notation
Numeral systems are classified here as to whether they use positional notation (also known as place-value notation), and further categorized by radix or base.
Standard positional numeral systems
The common names are derived somewhat arbitrarily from a mix of Latin and Greek, in some cases including roots from both languages within a single name.[1]
Base | Name | Usage |
---|---|---|
2 | Binary | Digital computing |
3 | Ternary | Cantor set (all points in [0,1] that can be represented in ternary with no 1s); counting Tasbih in Islam; hand-foot-yard and teaspoon-tablespoon-shot measurement systems; most economical integer base |
4 | Quaternary | Data transmission and Hilbert curves; Chumashan languages, and Kharosthi numerals |
5 | Quinary | Gumatj, Nunggubuyu, Kuurn Kopan Noot, and Saraveca languages; common count grouping e.g. tally marks |
6 | Senary | Diceware, Ndom, Kanum, and Proto-Uralic language (suspected) |
7 | Septenary | weeks timekeeping |
8 | Octal | Charles XII of Sweden, Unix-like permissions, Squawk codes, DEC PDP-11, compact notation for binary numbers, Xiantian (I Ching, China) |
10 | Decimal | Most widely used by modern civilizations[2][3][4] |
11 | Undecimal | Jokingly proposed during the French Revolution to settle a dispute between those proposing a shift to duodecimal and those who were content with decimal |
12 | Duodecimal | Languages in the Nigerian Middle Belt Janji, Gbiri-Niragu, Piti, and the Nimbia dialect of Gwandara; Chepang language of Nepal, and the Mahl dialect of Maldivian; dozen-gross-great gross counting; 12-hour clock and months timekeeping; years of Chinese zodiac; foot and inch; Telephone number |
13 | Tridecimal | Conway base 13 function |
14 | Tetradecimal | Programming for the HP 9100A/B calculator[5] and image processing applications[6] |
15 | Pentadecimal | Telephony routing over IP, and the Huli language |
16 | Hexadecimal | Base16 encoding; compact notation for binary data; tonal system; ounce and pound |
20 | Vigesimal | Basque, Celtic, Maya, Muisca, Inuit, Yoruba, Tlingit, and Dzongkha numerals; Santali, and Ainu languages |
23 | Trivigesimal | Kalam language, Kobon language |
24 | Tetravigesimal | 24-hour clock timekeeping; Kaugel language |
26 | Hexavigesimal | Base 26 encoding; sometimes used for encryption or ciphering.[7] |
27 | Heptavigesimal | Telefol and Oksapmin languages. Mapping the nonzero digits to the alphabet and zero to the space is occasionally used to provide checksums for alphabetic data such as personal names,[8] to provide a concise encoding of alphabetic strings,[9] or as the basis for a form of gematria.[10] |
30 | Trigesimal | The Natural Area Code |
32 | Duotrigesimal | Base32 encoding and the Ngiti language |
33 | Tritrigesimal | Use of letters (except I, O, Q) with digits in vehicle registration plates of Hong Kong |
36 | Hexatrigesimal | Base36 encoding; use of letters with digits |
52 | Duoquinquagesimal | Base52 encoding, a variant of Base62 without vowels[11] |
56 | Hexaquinquagesimal | Base56 encoding, a variant of Base58[12] |
57 | Heptaquinquagesimal | Base57 encoding, a variant of Base62 excluding I, O, l, U, and u[13] |
58 | Octoquinquagesimal | Base58 encoding |
60 | Sexagesimal | Babylonian numerals; NewBase60 encoding, similar to Base62, excluding I, O, and l, but including _(underscore);[14]degrees-minutes-seconds and hours-minutes-seconds measurement systems; Ekari and Sumerian languages |
61 | Unsexagesimal | NewBase61 encoding, variant of NewBase60 with a space[15] |
62 | Duosexagesimal | Base62 encoding, using 0-9, A-Z, and a-z |
64 | Tetrasexagesimal | Base64 encoding; I Ching in China |
65 | Pentasexagesimal | Base65 encoding, a variant of Base64[16] |
85 | Pentoctogesimal | Ascii85 encoding. This is the minimum number of characters needed to encode a 32 bit number into 5 printable characters in a process similar to MIME-64 encoding, since 855 is only slightly bigger than 232. Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters. |
91 | Unnonagesimal | Base91 encoding, using all ASCII except "-" (0x2D), "\" (0x5C), and "'" (0x27); one variant uses "\" (0x5C) in place of """ (0x22). |
92 | Duononagesimal | Base92 encoding, using all of ASCII except for "`" (0x60) and """ (0x22) due to confusability.[17] |
93 | Trinonagesimal | Base93 encoding, using all of ASCII printable characters except for "," (0x27) and "-" (0x3D) as well as the Space character. "," is reserved for delimiter and "-" is reserved for negation.[18] |
94 | Tetranonagesimal | Base94 encoding, using all of ASCII printable characters.[19] |
95 | Pentanonagesimal | Base95 encoding, a variant of Base94 with the addition of the Space character.[20] |
256 | Ducentahexaquinquagesimal | Base256 encoding[citation needed] |
Non-standard positional numeral systems
Bijective numeration
Base | Name | Usage |
---|---|---|
1 | Unary (Bijective base-1) | Tally marks |
10 | Bijective base-10 | |
26 | Bijective base-26 | Spreadsheet column numeration. Also used by John Nash as part of his obsession with numerology and the uncovering of "hidden" messages.[21] |
Signed-digit representation
Base | Name | Usage |
---|---|---|
2 | Balanced binary (Non-adjacent form) | |
3 | Balanced ternary | Ternary computers |
5 | Balanced quinary | |
9 | Balanced nonary | |
10 | Balanced decimal | John Colson Augustin Cauchy |
Negative bases
The common names of the negative base numeral systems are formed using the prefix nega-, giving names such as:
Base | Name | Usage |
---|---|---|
โ2 | Negabinary | |
โ3 | Negaternary | |
โ10 | Negadecimal |
Complex bases
Base | Name | Usage |
---|---|---|
2i | Quater-imaginary base | |
โ1 ยฑ i | Twindragon base | Twindragon fractal shape |
Non-integer bases
Base | Name | Usage |
---|---|---|
ฯ | Golden ratio base | Early Beta encoder[22] |
e | Base | Lowest radix economy |
Other
Non-positional notation
All known numeral systems developed before the Babylonian numerals are non-positional.[23]
Trivia
Lua error in package.lua at line 80: module 'strict' not found.
- In this Youtube video, Matt Parker jokingly invented a base-1082 system (From a Fermi estimate of the number of atoms in the universe). He uses this numeral system to describe how many atom carry-overs (i.e. number of parallel universes, or digits in this radix) it takes to have a hypothetical supercomputer generate all possible 256ร256 grayscale images, when the root universe lasts 1017 seconds (another Fermi estimate). This turns out to be 1925.
See also
- Radix
- Radix economy
- Table of bases
- List of numbers in various languages (cardinal number names)
- Numeral prefix
References
- โ For the mixed roots of the word "hexadecimal", see Lua error in package.lua at line 80: module 'strict' not found..
- โ The History of Arithmetic, Louis Charles Karpinski, 200pp, Rand McNally & Company, 1925.
- โ Histoire universelle des chiffres, Georges Ifrah, Robert Laffont, 1994.
- โ The Universal History of Numbers: From prehistory to the invention of the computer, Georges Ifrah, ISBN 0-471-39340-1, John Wiley and Sons Inc., New York, 2000. Translated from the French by David Bellos, E.F. Harding, Sophie Wood and Ian Monk
- โ HP Museum
- โ Free Patents Online
- โ http://www.dcode.fr/base-26-cipher
- โ Lua error in package.lua at line 80: module 'strict' not found..
- โ Lua error in package.lua at line 80: module 'strict' not found..
- โ Lua error in package.lua at line 80: module 'strict' not found..
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Lua error in package.lua at line 80: module 'strict' not found.
- โ Chrisomalis calls the Babylonian system "the first positional system ever" in Lua error in package.lua at line 80: module 'strict' not found..