Truncated 8-simplexes

From Infogalactic: the planetary knowledge core
(Redirected from Truncated 8-simplex)
Jump to: navigation, search
8-simplex t0.svg
8-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
180px
Truncated 8-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
8-simplex t1.svg
Rectified 8-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
180px
Quadritruncated 8-simplex
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
180px
Tritruncated 8-simplex
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
180px
Bitruncated 8-simplex
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Orthogonal projections in A8 Coxeter plane

In eight-dimensional geometry, a truncated 8-simplex is a convex uniform 8-polytope, being a truncation of the regular 8-simplex.

There are a four unique degrees of truncation. Vertices of the truncation 8-simplex are located as pairs on the edge of the 8-simplex. Vertices of the bitruncated 8-simplex are located on the triangular faces of the 8-simplex. Vertices of the tritruncated 8-simplex are located inside the tetrahedral cells of the 8-simplex.

Truncated 8-simplex

Truncated 8-simplex
Type uniform 8-polytope
Schläfli symbol t{37}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges 288
Vertices 72
Vertex figure Elongated 6-simplex pyramid
Coxeter group A8, [37], order 362880
Properties convex

Alternate names

  • Truncated enneazetton (Acronym: tene) (Jonathan Bowers)[1]

Coordinates

The Cartesian coordinates of the vertices of the truncated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,0,0,1,2). This construction is based on facets of the truncated 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [5] [4] [3]

Bitruncated 8-simplex

Bitruncated 8-simplex
Type uniform 8-polytope
Schläfli symbol 2t{37}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges 1008
Vertices 252
Vertex figure
Coxeter group A8, [37], order 362880
Properties convex

Alternate names

  • Bitruncated enneazetton (Acronym: batene) (Jonathan Bowers)[2]

Coordinates

The Cartesian coordinates of the vertices of the bitruncated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,0,1,2,2). This construction is based on facets of the bitruncated 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [5] [4] [3]

Tritruncated 8-simplex

tritruncated 8-simplex
Type uniform 8-polytope
Schläfli symbol 3t{37}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges 2016
Vertices 504
Vertex figure
Coxeter group A8, [37], order 362880
Properties convex

Alternate names

  • Tritruncated enneazetton (Acronym: tatene) (Jonathan Bowers)[3]

Coordinates

The Cartesian coordinates of the vertices of the tritruncated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,2,2,2). This construction is based on facets of the tritruncated 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [5] [4] [3]

Quadritruncated 8-simplex

Quadritruncated 8-simplex
Type uniform 8-polytope
Schläfli symbol 4t{37}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
or CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
6-faces 18 3t{3,3,3,3,3,3}
7-faces
5-faces
4-faces
Cells
Faces
Edges 2520
Vertices 630
Vertex figure
Coxeter group A8, [[37]], order 725760
Properties convex, isotopic

The quadritruncated 8-simplex an isotopic polytope, constructed from 18 tritruncated 7-simplex facets.

Alternate names

  • Octadecazetton (18-facetted 8-polytope) (Acronym: be) (Jonathan Bowers)[4]

Coordinates

The Cartesian coordinates of the vertices of the quadritruncated 8-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,2,2,2). This construction is based on facets of the quadritruncated 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Related polytopes

Isotopic uniform truncated simplices
Dim. 2 3 4 5 6 7 8
Name
Coxeter
Hexagon
CDel branch 11.png = CDel node 1.pngCDel 6.pngCDel node.png
t{3} = {6}
Octahedron
CDel node 1.pngCDel split1.pngCDel nodes.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
r{3,3} = {31,1} = {3,4}
\left\{\begin{array}{l}3\\3\end{array}\right\}
Decachoron
CDel branch 11.pngCDel 3ab.pngCDel nodes.png
2t{33}
Dodecateron
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
2r{34} = {32,2}
\left\{\begin{array}{l}3, 3\\3 ,3\end{array}\right\}
Tetradecapeton
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
3t{35}
Hexadecaexon
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
3r{36} = {33,3}
\left\{\begin{array}{l}3, 3, 3\\3, 3, 3\end{array}\right\}
Octadecazetton
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
4t{37}
Images Truncated triangle.png 3-cube t2.svgUniform polyhedron-33-t1.png 4-simplex t12.svgSchlegel half-solid bitruncated 5-cell.png 5-simplex t2.svg5-simplex t2 A4.svg 6-simplex t23.svg60px 60px60px 60px60px
Facets {3} Regular polygon 3 annotated.svg t{3,3} Uniform polyhedron-33-t01.png r{3,3,3} Schlegel half-solid rectified 5-cell.png 2t{3,3,3,3} 5-simplex t12.svg 2r{3,3,3,3,3} 6-simplex t2.svg 3t{3,3,3,3,3,3} 30px
As
intersecting
dual
simplexes
Regular hexagon as intersection of two triangles.png
CDel branch 10.pngCDel branch 01.png
120px
CDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel node.pngCDel split1.pngCDel nodes 01ld.png
60px
CDel branch.pngCDel 3ab.pngCDel nodes 10l.pngCDel branch.pngCDel 3ab.pngCDel nodes 01l.png
60px60px
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01l.png
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01l.png CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01l.png CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01l.png

Related polytopes

This polytope is one of 135 uniform 8-polytopes with A8 symmetry.

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 8D, uniform polytopes (polyzetta) x3x3o3o3o3o3o3o - tene, o3x3x3o3o3o3o3o - batene, o3o3x3x3o3o3o3o - tatene, o3o3o3x3x3o3o3o - be

External links

  1. Klitizing, (x3x3o3o3o3o3o3o - tene)
  2. Klitizing, (o3x3x3o3o3o3o3o - batene)
  3. Klitizing, (o3o3x3x3o3o3o3o - tatene)
  4. Klitizing, (o3o3o3x3x3o3o3o - be)