sec-Butyllithium

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
sec-Butyllithium
Skeletal formula of sec-butyllithium
Skeletal formula of tetrameric sec-butyllithium
Names
IUPAC name
sec-Butyllithium
Systematic IUPAC name
Butan-2-yllithium
Identifiers
598-30-1 YesY
3587206
ChemSpider 10254345 YesY
EC Number 209-927-7
Jmol 3D model Interactive image
Interactive image
PubChem 102446
  • InChI=1S/C4H9.Li/c1-3-4-2;/h3H,4H2,1-2H3; YesY
    Key: VATDYQWILMGLEW-UHFFFAOYSA-N YesY
  • InChI=1/C4H9.Li/c1-3-4-2;/h3H,4H2,1-2H3;/rC4H9Li/c1-3-4(2)5/h4H,3H2,1-2H3
    Key: VATDYQWILMGLEW-MHILWDCKAX
  • [Li]C(C)CC
  • CC([Li])CC
Properties
C4H9Li
Molar mass 64.06 g·mol−1
Acidity (pKa) 51
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

sec-Butyllithium is an organometallic compound with the formula CH3CHLiCH2CH3, abbreviated sec-BuLi or s-BuLi. This chiral organolithium reagent is used as a source of sec-butyl carbanion in organic synthesis.[1]

sec-BuLi can be prepared by the reaction of sec-butyl halides with lithium metal:[2]

400px

The carbon-lithium bond is highly polar, rendering the carbon basic, as in other organolithium reagents. Sec-butyllithium is more basic than the primary organolithium reagent, n-butyllithium. It is also more sterically hindered, though it is still useful for syntheses.

sec-BuLi is employed for deprotonations of particularly weak carbon acids where the more conventional reagent n-BuLi is unsatisfactory. It is, however, so basic that its use requires greater care than for n-BuLi. For example diethyl ether is attacked by sec-BuLi at room temperature in minutes, whereas ether solutions of n-BuLi are stable.[1] Many transformations involving sec-butyllithium are similar to those involving other organolithium reagents. For example, sec-BuLi react with carbonyl compounds and esters to form alcohols. With copper(I) iodide sec-BuLi forms lithium di-sec-butylcuprates. The first two reactions can also be accomplished by using sec-butylmagnesium bromide, a Grignard reagent; in fact, the latter is the typical reagent for this purpose.

References

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />
  1. 1.0 1.1 Ovaska, T. V. "s-Butyllithium" in Encyclopedia of Reagents for Organic Synthesis, 2001 John Wiley & Sons: New York. doi:10.1002/047084289X.rb397.
  2. Lua error in package.lua at line 80: module 'strict' not found.