Reduced gradient bubble model

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

The reduced gradient bubble model (RGBM) is an algorithm developed by Dr Bruce Wienke for calculating decompression stops needed for a particular dive profile. It is related to the Varying Permeability Model.[1] but is conceptually beyond that early model.

It is used in several dive computers, particularly those made by Suunto, Mares, HydroSpace Engineering,[1] and Underwater Technologies Center. It is characterised by the following assumptions: blood flow (perfusion) provides a limit for tissue gas penetration by diffusion; an exponential distribution of sizes of bubble seeds is always present, with many more small seeds than large ones; bubbles are permeable to gas transfer across surface boundaries under all pressures; the haldanean tissue compartments range in half time from 1 to 720 minutes, depending on gas mixture.[1]

Manufacturers such as Suunto have also devised approximations of Wienke's model. Suunto uses a modified haldanean nine-compartment model with the assumption of reduced off-gassing caused by bubbles. This implementation offers both a depth ceiling and a depth floor for the decompression stops. The former maximises tissue off-gassing and the latter minimises bubble growth.[2] The model has been correlated and validated In a number of published articles using collected dive profile data.

References

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

External links

  • Lua error in package.lua at line 80: module 'strict' not found. – Bruce Wienke describes the differences between RGBM and VPM
  • Lua error in package.lua at line 80: module 'strict' not found.


<templatestyles src="Asbox/styles.css"></templatestyles>

  1. 1.0 1.1 1.2 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.