Quantum topology

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found. Quantum topology is a branch of mathematics that connects quantum mechanics with low-dimensional topology.

Dirac notation provides a viewpoint of quantum mechanics which becomes amplified into a framework that can embrace the amplitudes associated with topological spaces and the related embedding of one space within another such as knots and links in three-dimensional space. This bra–ket notation of kets and bras can be generalised, becoming maps of vector spaces associated with topological spaces that allow tensor products.[1]

Topological entanglement involving linking and braiding can be intuitively related to quantum entanglement.[1]

See also

References

  • Quantum topology by Louis H. Kauffman and Randy A. Baadhio, World Scientific Publishing Co Pte Ltd, 1993

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

External links

  • 1.0 1.1 Quantum Topology and Quantum Computing by Louis H. Kauffman