Polyadic algebra
From Infogalactic: the planetary knowledge core
Polyadic algebras (more recently called Halmos algebras[1]) are algebraic structures introduced by Paul Halmos. They are related to first-order logic in a way analogous to the relationship between Boolean algebras and propositional logic (see Lindenbaum-Tarski algebra).
There are other ways to relate first-order logic to algebra, including Tarski's cylindric algebras[1] (when equality is part of the logic) and Lawvere's functorial semantics (categorical approach).[2]
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
Further reading
- Paul Halmos, Algebraic Logic, Chelsea Publishing, New York (1962)
<templatestyles src="Asbox/styles.css"></templatestyles>