Partial group algebra

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

A partial group algebra is an associative algebra related to the partial representations of a group.

Examples

  • The partial group algebra Failed to parse (Missing <code>texvc</code> executable. Please see math/README to configure.): \mathbb{C}_{\text{par}}\left(\mathbb{Z}_4\right)
is isomorphic to the direct sum:[1]
  • \mathbb{C}\oplus \mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus M_2\left(\mathbb{C}\right) \oplus M_3\left(\mathbb{C}\right)

See also

Notes

  1. R. Exel (1998)

References

  • R. Exel. Partial Actions of Groups and Actions of Semigroups. Proc. Am. Math. Soc. 126 no. 12 (1998), 3481–3494.


<templatestyles src="Asbox/styles.css"></templatestyles>