Mittag-Leffler function
In mathematics, the Mittag-Leffler function Eα,β is a special function, a complex function which depends on two complex parameters α and β. It may be defined by the following series when the real part of α is strictly positive:
In the case α and β are real and positive, the series converges for all values of the argument z, so the Mittag-Leffler function is an entire function. This function is named after Gösta Mittag-Leffler. This class of functions are important in the theory of the fractional calculus.
For α > 0, the Mittag-Leffler function Eα,1 is an entire function of order 1/α, and is in some sense the simplest entire function of its order.
Contents
Special cases
For we find
The sum of a geometric progression:
For , the integral
gives, respectively
,
,
.
Mittag-Leffler's integral representation
where the contour C starts and ends at −∞ and circles around the singularities and branch points of the integrand.
See also
References
Lua error in package.lua at line 80: module 'strict' not found.
- Mittag-Leffler, M.G.: Sur la nouvelle fonction E(x). C. R. Acad. Sci. Paris 137, 554–558 (1903)
- Mittag-Leffler, M.G.: Sopra la funzione E˛.x/. Rend. R. Acc. Lincei, (Ser. 5) 13, 3–5 (1904)
- Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V., Mittag-Leffler Functions, Related Topics and Applications (Springer, New York, 2014) 443 pages ISBN 978-3-662-43929-6
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
External links
- Mittag-Leffler function on MathWorld
- Mittag-Leffler function: MATLAB code
- Mittag-Leffler and stable random numbers: Continuous-time random walks and stochastic solution of space-time fractional diffusion equations
- Parameter estimation for fractional Poisson processes
This article incorporates material from Mittag-Leffler function on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.