Meyer wavelet

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found.

The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. It is infinitely differentiable with infinite support and defined in frequency domain in terms of function  \nu as:

 \Psi ( \omega) := \begin{cases}
\frac {1}{\sqrt{2\pi}} \sin\left(\frac {\pi}{2} \nu \left(\frac{3|\omega|}{2\pi} -1\right)\right) e^{j\omega/2} & \text{if } 2 \pi /3<|\omega|< 4 \pi /3, \\
\frac {1}{\sqrt{2\pi}} \cos\left(\frac {\pi}{2} \nu \left(\frac{3| \omega|}{4 \pi}-1\right)\right) e^{j \omega/2} & \text{if } 4 \pi /3<| \omega|< 8 \pi /3, \\
0 & \text{otherwise}, \end{cases}

where:

 \nu (x) := \begin{cases}
0 & \text{if } x < 0, \\
x & \text{if } 0< x < 1, \\
1 & \text{if } x > 1. \end{cases}

There are many different ways for defining this auxiliary function, which yields variants of the Meyer wavelet. For instance, another standard implementation adopts

 \nu (x) := \begin{cases}
{x^4}(35-84x+70{x^2}-20{x^3}) & \text{if } 0< x < 1, \\
0 & \text{otherwise}. \end{cases}
File:Spectrum Meyer wavelet.png
Spectrum of the Meyer wavelet.

The Meyer scale function is given by:

 \Phi ( \omega) := \begin{cases}
\frac {1}{\sqrt{2\pi}} & \text{if } | \omega|< 2 \pi /3, \\
\frac {1}{\sqrt{2\pi}} \cos\left(\frac {\pi}{2} \nu \left(\frac{3|\omega|} {2\pi}-1\right) \right)  & \text{if } 2\pi/3<|\omega|< 4\pi/3, \\
0 & \text{otherwise}. \end{cases}
Meyer scale function.

In the time-domain, the waveform of the Meyer mother-wavelet has the shape as shown in the following figure:

File:Meyer wavelet.png
Meyer wavelet.

References

  • Meyer (Y.), Ondelettes et Opérateurs, Hermann, 1990.
  • Daubechies, (I.), Ten lectures on wavelets, CBMS-NSF conference series in applied mathematics, SIAM Ed., pp. 117–119, 137, 152, 1992.

External links