List of H4 polytopes

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Schlegel wireframe 120-cell.png
120-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Schlegel wireframe 600-cell vertex-centered.png
600-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png

In 4-dimensional geometry, there are 15 uniform polytopes with H4 symmetry. Two of these, the 120-cell and 600-cell, are regular.

Visualizations

Each can be visualized as symmetric orthographic projections in Coxeter planes of the H4 Coxeter group, and other subgroups.

The 3D picture are drawn as Schlegel diagram projections, centered on the cell at pos. 3, with a consistent orientation, and the 5 cells at position 0 are shown solid.

# Name Coxeter plane projections Schlegel diagrams Net
F4
[12]
[20] H4
[30]
H3
[10]
A3
[4]
A2
[3]
Dodecahedron
centered
Tetrahedron
centered
32 120-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{5,3,3}
120-cell t0 F4.svg 120-cell t0 p20.svg 120-cell graph H4.svg 120-cell t0 H3.svg 120-cell t0 A3.svg 120-cell t0 A2.svg Schlegel wireframe 120-cell.png 120-cell net.png
33 rectified 120-cell
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
r{5,3,3}
60px 60px 60px 120-cell t1 H3.svg 60px 60px Rectified 120-cell schlegel halfsolid.png 60px
34 rectified 600-cell
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
r{3,3,5}
60px 60px 60px 600-cell t1 H3.svg 60px 60px Rectified 600-cell schlegel halfsolid.png 60px
35 600-cell
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
{3,3,5}
600-cell t0 F4.svg 600-cell t0 p20.svg 600-cell graph H4.svg 600-cell t0 H3.svg 600-cell t0.svg 600-cell t0 A2.svg Schlegel wireframe 600-cell vertex-centered.png Stereographic polytope 600cell.png 600-cell net.png
36 truncated 120-cell
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t{5,3,3}
60px 60px 60px File:120-cell t01 H3.svg 60px 60px Schlegel half-solid truncated 120-cell.png 60px
37 cantellated 120-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
rr{5,3,3}
120-cell t02 H3.png 60px 60px Cantellated 120 cell center.png 60px
38 runcinated 120-cell
(also runcinated 600-cell)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{5,3,3}
120-cell t03 H3.png 60px 60px Runcinated 120-cell.png 60px
39 bitruncated 120-cell
(also bitruncated 600-cell)
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{5,3,3}
120-cell t12 H3.png 60px 60px Bitruncated 120-cell schlegel halfsolid.png 60px
40 cantellated 600-cell
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,2{3,3,5}
60px 60px 60px File:600-cell t02 H3.svg 60px 60px Cantellated 600 cell center.png 60px
41 truncated 600-cell
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t{3,3,5}
60px 60px 60px File:600-cell t01 H3.svg 60px 60px Schlegel half-solid truncated 600-cell.png 60px
42 cantitruncated 120-cell
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
tr{5,3,3}
120-cell t012 H3.png 60px 60px Cantitruncated 120-cell.png 60px
43 runcitruncated 120-cell
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{5,3,3}
120-cell t013 H3.png 60px 60px Runcitruncated 120-cell.png 60px
44 runcitruncated 600-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,3{3,3,4}
120-cell t023 H3.png 60px 60px Runcitruncated 600-cell.png 60px
45 cantitruncated 600-cell
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{3,3,5}
120-cell t123 H3.png 60px 60px Cantitruncated 600-cell.png 60px
46 omnitruncated 120-cell
(also omnitruncated 600-cell)
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{5,3,3}
120-cell t0123 H3.png 60px 60px Omnitruncated 120-cell wireframe.png 60px
Diminished forms
# Name Coxeter plane projections Schlegel diagrams Net
F4
[12]
[20] H4
[30]
H3
[10]
A3
[4]
A2
[3]
Dodecahedron
centered
Tetrahedron
centered
47 20-diminished 600-cell
(grand antiprism)
Grand antiprism ortho-30-gon.png 60px 60px
31 24-diminished 600-cell
(snub 24-cell)
24-cell h01 F4.svg 60px
Nonuniform Bi-24-diminished 600-cell Bidex ortho 12-gon.png Bidex ortho-30-gon.png Biicositetradiminished hexacosichoron net.png
Nonuniform 120-diminished rectified 600-cell 60px

Coordinates

The coordinates of uniform poyltopes from the H4 family are complicated. The regular ones can be expressed in terms of the golden ratio φ = (1 + √5)/2 and σ = (3√5 + 1)/2. Coxeter expressed them as 5-dimensional coordinates.[1]

n 120-cell 600-cell
4D

The 600 vertices of the 120-cell include all permutations of:[2]

(0, 0, ±2, ±2)
(±1, ±1, ±1, ±√5)
(±φ−2, ±φ, ±φ, ±φ)
(±φ−1, ±φ−1, ±φ−1, ±φ2)

and all even permutations of

(0, ±φ−2, ±1, ±φ2)
(0, ±φ−1, ±φ, ±√5)
(±φ−1, ±1, ±φ, ±2)
The vertices of a 600-cell centered at the origin of 4-space, with edges of length 1/φ (where φ = (1+√5) /2 is the golden ratio), can be given as follows: 16 vertices of the form:[3]
(±½, ±½, ±½, ±½),

and 8 vertices obtained from

(0, 0, 0, ±1) by permuting coordinates.

The remaining 96 vertices are obtained by taking even permutations of

½ (±φ, ±1, ±1/φ, 0).
5D Zero-sum permutation:
(30): (√5,√5,0,-√5,-√5)
(10): ±(4,-1,-1,-1,-1)
(40): ±(φ−1−1−1,2,-σ)
(40): ±(φ,φ,φ,-2,-(σ-1))
(120): ±(φ√5,0,0,φ−1√5,-√5)
(120): ±(2,2,φ−1√5,-φ,-3)
(240): ±(φ2,2φ−1−2,-1,-2φ)
Zero-sum permutation:
(20): (√5,0,0,0,-√5)
(40): ±(φ2−2,-1,-1,-1)
(60): ±(2,φ−1−1,-φ,-φ)

References

  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26)
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

External links

  1. Coxeter, Regular and Semi-Regular Polytopes II, Four-dimensional polytopes', p.296-298
  2. Weisstein, Eric W., "120-cell", MathWorld.
  3. Weisstein, Eric W., "600-cell", MathWorld.