List of A4 polytopes

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Orthographic projections
A4 Coxeter plane
4-simplex t0.svg
5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

In 4-dimensional geometry, there are 9 uniform polytopes with A4 symmetry. There is one self-dual regular form, the 5-cell with 5 vertices.

Visualizations

Each can be visualized as symmetric orthographic projections in Coxeter planes of the A4 Coxeter group, and other subgroups. Three Coxeter plane 2D projections are given, for the A4, A3, A2 Coxeter groups, showing symmetry order 5,4,3, and doubled on even Ak orders to 10,4,6 for symmetric Coxeter diagrams.

The 3D picture are drawn as Schlegel diagram projections, centered on the cell at pos. 3, with a consistent orientation, and the 5 cells at position 0 are shown solid.

+ Uniform polytopes with A4symmetry

# Name Coxeter diagram
and Schläfli
symbols
Coxeter plane graphs Schlegel diagram Net
A4
[5]
A3
[4]
A2
[3]
Tetrahedron
centered
Dual tetrahedron
centered
1 5-cell
pentachoron
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3,3}
4-simplex t0.svg 4-simplex t0 A3.svg 4-simplex t0 A2.svg Schlegel wireframe 5-cell.png 5-cell net.png
2 rectified 5-cell CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
r{3,3,3}
4-simplex t1.svg 60px 60px Schlegel half-solid rectified 5-cell.png 60px
3 truncated 5-cell CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t{3,3,3}
4-simplex t01.svg 60px 60px Schlegel half-solid truncated pentachoron.png 60px
4 cantellated 5-cell CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
rr{3,3,3}
4-simplex t02.svg 60px 60px Schlegel half-solid cantellated 5-cell.png 60px
7 cantitruncated 5-cell CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
tr{3,3,3}
4-simplex t012.svg 60px 60px Schlegel half-solid cantitruncated 5-cell.png 60px
8 runcitruncated 5-cell CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{3,3,3}
4-simplex t013.svg 60px 60px Schlegel half-solid runcitruncated 5-cell.png 60px

+ Uniform polytopes with extended A4symmetry

# Name Coxeter diagram
and Schläfli
symbols
Coxeter plane graphs Schlegel diagram Net
A4
[[5]] = [10]
A3
[4]
A2
[[3]] = [6]
Tetrahedron
centered
5 *runcinated 5-cell CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{3,3,3}
4-simplex t03.svg 60px 60px Schlegel half-solid runcinated 5-cell.png 60px
6 *bitruncated 5-cell
decachoron
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
2t{3,3,3}
4-simplex t12.svg 60px 60px Schlegel half-solid bitruncated 5-cell.png 60px
9 *omnitruncated 5-cell CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{3,3,3}
4-simplex t0123.svg 60px 60px Schlegel half-solid omnitruncated 5-cell.png 60px

Coordinates

The coordinates of uniform 4-polytopes with pentachoric symmetry can be generated as permutations of simple integers in 5-space, all in hyperplanes with normal vector (1,1,1,1,1). The A4 Coxeter group is palindromic, so repeated polytopes exist in pairs of dual configurations. There are 3 symmetric positions, and 6 pairs making the total 15 permutations of one or more rings. All 15 are listed here in order of binary arithmetic for clarity of the coordinate generation from the rings in each corresponding Coxeter diagram.

The number of vertices can be deduced here from the permutations of the number of coordinates, peaking at 5 factorial for the omnitruncated form with 5 unique coordinate values.

5-cell truncations in 5-space:
# Base point Name
(symmetric name)
Coxeter diagram Vertices
1 (0, 0, 0, 0, 1)
(1, 1, 1, 1, 0)
5-cell
Trirectified 5-cell
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5 5!/(4!)
2 (0, 0, 0, 1, 1)
(1, 1, 1, 0, 0)
Rectified 5-cell
Birectified 5-cell
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
10 5!/(3!2!)
3 (0, 0, 0, 1, 2)
(2, 2, 2, 1, 0)
Truncated 5-cell
Tritruncated 5-cell
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
20 5!/(3!)
5 (0, 1, 1, 1, 2) Runcinated 5-cell CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png 20 5!/(3!)
4 (0, 0, 1, 1, 2)
(2, 2, 1, 1, 0)
Cantellated 5-cell
Bicantellated 5-cell
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
30 5!/(2!2!)
6 (0, 0, 1, 2, 2) Bitruncated 5-cell CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png 30 5!/(2!2!)
7 (0, 0, 1, 2, 3)
(3, 3, 2, 1, 0)
Cantitruncated 5-cell
Bicantitruncated 5-cell
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
60 5!/2!
8 (0, 1, 1, 2, 3)
(3, 2, 2, 1, 0)
Runcitruncated 5-cell
Runcicantellated 5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
60 5!/2!
9 (0, 1, 2, 3, 4) Omnitruncated 5-cell CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png 120 5!

References

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26)
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966

External links