Linear probability model
In statistics, a linear probability model is a special case of a binomial regression model. Here the dependent variable for each observation takes values which are either 0 or 1. The probability of observing a 0 or 1 in any one case is treated as depending on one or more explanatory variables. For the "linear probability model", this relationship is a particularly simple one, and allows the model to be fitted by simple linear regression.
The model assumes that, for a binary outcome (Bernoulli trial), , and its associated vector of explanatory variables,
,[1]
For this model,
and hence the vector of parameters β can be estimated using least squares. This method of fitting would be inefficient.[1] This method of fitting can be improved by adopting an iterative scheme based on weighted least squares,[1] in which the model from the previous iteration is used to supply estimates of the conditional variances, , which would vary between observations. This approach can be related to fitting the model by maximum likelihood.[1]
A drawback of this model is that, unless restrictions are placed on , the estimated coefficients can imply probabilities outside the unit interval
. For this reason, models such as the logit model or the probit model are more commonly used.
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
Further reading
- Lua error in package.lua at line 80: module 'strict' not found.