Ergodic process

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In econometrics and signal processing, a stochastic process is said to be ergodic if its statistical properties can be deduced from a single, sufficiently long, random sample of the process. The reasoning is that any collection of random samples from a process must represent the average statistical properties of the entire process. In other words, regardless of what the individual samples are, a birds-eye view of the collection of samples must represent the whole process. Conversely, a process that is not ergodic is a process that changes erratically at an inconsistent rate.[1]

Specific definitions

One can discuss the ergodicity of various statistics of a stochastic process. For example, a wide-sense stationary process X(t) has constant mean

\mu_X= E[X(t)],

and autocovariance

r_X(\tau) = E[(X(t)-\mu_X) (X(t+\tau)-\mu_X)],

that depends only on the lag \tau and not on time t. The properties \mu_X and r_X(\tau) are ensemble averages not time averages.

The process X(t) is said to be mean-ergodic[2] or mean-square ergodic in the first moment[3] if the time average estimate

\hat{\mu}_X = \frac{1}{T} \int_{0}^{T} X(t) \, dt

converges in squared mean to the ensemble average \mu_X as T \rightarrow \infty.

Likewise, the process is said to be autocovariance-ergodic or mean-square ergodic in the second moment[3] if the time average estimate

\hat{r}_X(\tau) = \frac{1}{T} \int_{0}^{T} [X(t+\tau)-\mu_X] [X(t)-\mu_X] \, dt

converges in squared mean to the ensemble average r_X(\tau), as T \rightarrow \infty. A process which is ergodic in the mean and autocovariance is sometimes called ergodic in the wide sense.[3]

An important example of an ergodic processes is the stationary Gaussian process with continuous spectrum.

Discrete-time random processes

The notion of ergodicity also applies to discrete-time random processes X[n] for integer n.

A discrete-time random process X[n] is ergodic in mean if

\hat{\mu}_X = \frac{1}{N} \sum_{n=1}^{N} X[n]

converges in squared mean to the ensemble average E[X], as N \rightarrow \infty.

Example of a non-ergodic random process

Suppose that we have two coins: one coin is fair and the other has two heads. We choose (at random) one of the coins, and then perform a sequence of independent tosses of our selected coin. Let X[n] denote the outcome of the nth toss, with 1 for heads and 0 for tails. Then the ensemble average is ½ · ½ + ½ · 1 = ¾; yet the long-term average is ½ for the fair coin and 1 for the two-headed coin. Hence, this random process is not ergodic in mean.

See also

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.


<templatestyles src="Asbox/styles.css"></templatestyles>

  1. Originally due to L. Boltzmann. See part 2 of Lua error in package.lua at line 80: module 'strict' not found. ('Ergoden' on p.89 in the 1923 reprint.) It was used to prove equipartition of energy in the kinetic theory of gases
  2. Papoulis, p.428
  3. 3.0 3.1 3.2 Porat, p.14