Diphosphorus tetraiodide
Ball-and-stick model of the diphosphorus tetraiodide molecule | |
Names | |
---|---|
IUPAC name
Diphosphorus tetraiodide
|
|
Preferred IUPAC name
Tetraiododiphosphane
|
|
Other names
Phosphorus(II) iodide
|
|
Identifiers | |
13455-00-0 ![]() |
|
Properties | |
P2I4 | |
Molar mass | 569.57 g/mol |
Appearance | Orange crystalline solid |
Melting point | 124 to 127 °C (255 to 261 °F; 397 to 400 K) |
Boiling point | Decomposes |
Decomposes | |
Vapor pressure | {{{value}}} |
Related compounds | |
Other anions
|
Diphosphorus tetrafluoride Diphosphorus tetrachloride Diphosphorus tetrabromide |
Other cations
|
diarsenic tetraiodide |
Related Binary Phosphorus halides
|
phosphorus triiodide |
Related compounds
|
diphosphane diphosphines |
![]() ![]() ![]() |
|
Infobox references | |
Diphosphorus tetraiodide is an orange crystalline solid with the formula P2I4. It has been used as a reducing agent in organic chemistry. It is a rare example of a compound with phosphorus in the +2 oxidation state, and can be classified as a subhalide of phosphorus. It is the most stable of the diphosphorus tetrahalides.[1]
Contents
Synthesis and structure
Diphosphorus tetraiodide is easily generated by the disproportionation of phosphorus triiodide in dry ether:
- 2 PI3 → P2I4 + I2
It can also be obtained by treating phosphorus trichloride and potassium iodide in anhydrous conditions.[2]
The compound adopts a centrosymmetric structure with a P-P bond of 2.230 Å.[3]
Reactions
Inorganic chemistry
Diphosphorus tetraiodide reacts with bromine to form mixtures PI3-xBrx. With sulfur, it is oxidized to P2S2I4, retaining the P-P bond.[1]
Organic chemistry
Diphosphorus tetraiodide is used in organic synthesis mainly as a deoxygenating agent.[4] It is used for deprotecting acetals and ketals to aldehydes and ketones, and for converting epoxides into alkenes and aldoximes into nitriles. It can also cyclize 2-aminoalcohols to aziridines[5] and to convert α,β-unsaturated carboxylic acids to α,β-unsaturated bromides.[6]
As foreshadowed by the work of Bertholet in 1855,[4] diphosphorus tetraiodide is used in the Kuhn–Winterstein reaction, the conversion of glycols to alkenes.[7]
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- ↑ 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Z. Žák, M. Černík "Diphosphorus tetraiodide at 120 K" Acta Crystallographica, Section C: Crystal Structure Communications 1996, vol. C52, pp. 290-1. doi:10.1107/S0108270195012510
- ↑ 4.0 4.1 Alain Krief, Vikas N. Telvekar "Diphosphorus Tetraiodide" Encyclopedia for Reagents in Organic Synthesis 2009. doi:10.1002/047084289X.rd448.pub2
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- Pages with reference errors
- Pages with broken file links
- Articles without EBI source
- Chemical pages without ChemSpiderID
- Articles without KEGG source
- Articles without InChI source
- Articles without UNII source
- Chemical articles using a fixed chemical formula
- Iodides
- Phosphorus halides
- Inorganic phosphorus compounds
- Phosphanes