Cantellated 5-orthoplexes

From Infogalactic: the planetary knowledge core
(Redirected from Cantellated 5-orthoplex)
Jump to: navigation, search
5-cube t4.svg
5-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-cube t24.svg
Cantellated 5-orthoplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-cube t13.svg
Bicantellated 5-cube
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
5-cube t13.svg
Cantellated 5-cube
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-cube t0.svg
5-cube
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
5-cube t012.svg
Cantitruncated 5-orthoplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-cube t123.svg
Bicantitruncated 5-cube
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
5-cube t234.svg
Cantitruncated 5-cube
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Orthogonal projections in B5 Coxeter plane

In five-dimensional geometry, a cantellated 5-orthoplex is a convex uniform 5-polytope, being a cantellation of the regular 5-orthoplex.

There are 6 cantellation for the 5-orthoplex, including truncations. Some of them are more easily constructed from the dual 5-cube.

Cantellated 5-orthoplex

Cantellated 5-orthoplex
Type Uniform 5-polytope
Schläfli symbol rr{3,3,3,4}
rr{3,3,31,1}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
4-faces 82
Cells 640
Faces 1520
Edges 1200
Vertices 240
Vertex figure Cantellated pentacross verf.png
Coxeter group B5 [4,3,3,3]
D5 [32,1,1]
Properties convex

Alternate names

  • Cantellated 5-orthoplex
  • Bicantellated 5-demicube
  • Small rhombated triacontiditeron (Acronym: sart) (Jonathan Bowers)[1]

Coordinates

The vertices of the can be made in 5-space, as permutations and sign combinations of:

(0,0,1,1,2)

Images

The cantellated 5-orthoplex is constructed by a cantellation operation applied to the 5-orthoplex.

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t24.svg 150px 150px
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 150px 150px
Dihedral symmetry [4] [4]

Cantitruncated 5-orthoplex

Cantitruncated 5-orthoplex
Type uniform 5-polytope
Schläfli symbol tr{3,3,3,4}
tr{3,31,1}
Coxeter-Dynkin diagrams CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
4-faces 82
Cells 640
Faces 1520
Edges 1440
Vertices 480
Vertex figure Canitruncated 5-orthoplex verf.png
Coxeter groups B5, [3,3,3,4]
D5, [32,1,1]
Properties convex

Alternate names

  • Cantitruncated pentacross
  • Cantitruncated triacontiditeron (Acronym: gart) (Jonathan Bowers)[2]

Coordinates

Cartesian coordinates for the vertices of a cantitruncated 5-orthoplex, centered at the origin, are all sign and coordinate permutations of

(±3,±2,±1,0,0)

Images

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t234.svg 150px 150px
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 150px 150px
Dihedral symmetry [4] [4]

Related polytopes

These polytopes are from a set of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex.

<templatestyles src="Template:Hidden begin/styles.css"/>

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 5D, uniform polytopes (polytera) x3o3x3o4o - sart, x3x3x3o4o - gart

External links

  1. Klitizing, (x3o3x3o4o - sart)
  2. Klitizing, (x3x3x3o4o - gart)