AC0
AC0 is a complexity class used in circuit complexity. It is the smallest class in the AC hierarchy, and consists of all families of circuits of depth O(1) and polynomial size, with unlimited-fanin AND gates and OR gates. (We allow NOT gates only at the inputs).[1] It thus contains NC0, which has only bounded-fanin AND and OR gates.[1]
Example problems
Integer addition and subtraction are computable in AC0,[2] but multiplication is not (at least, not under the usual binary or base-10 representations of integers).
Descriptive complexity
From a descriptive complexity viewpoint, DLOGTIME-uniform AC0 is equal to the descriptive class FO+BIT of all languages describable in first-order logic with the addition of the BIT predicate, or alternatively by FO(+, ), or by Turing machine in the logarithmic hierarchy.[3]
Separations
In 1984 Furst, Saxe, and Sipser showed that calculating the parity of an input cannot be decided by any AC0 circuits, even with non-uniformity.[4][1] It follows that AC0 is not equal to NC1, because a family of circuits in the latter class can compute parity.[1] More precise bounds follow from switching lemma. Using them, it has been shown that there is an oracle separation between the polynomial hierarchy and PSPACE.
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />