Philadelphia chromosome

From Infogalactic: the planetary knowledge core
(Redirected from Bcr-abl fusion protein)
Jump to: navigation, search
Philadelphia chromosome
Bcrablmet.jpg
A metaphase cell positive for the bcr/abl rearrangement using FISH
Classification and external resources
Specialty Lua error in Module:Wikidata at line 446: attempt to index field 'wikibase' (a nil value).
ICD-10 C92.1
ICD-9-CM 205.1
ICD-O 9875/3
Patient UK Philadelphia chromosome
MeSH D010677
[[[d:Lua error in Module:Wikidata at line 863: attempt to index field 'wikibase' (a nil value).|edit on Wikidata]]]

The Philadelphia chromosome or Philadelphia translocation is a specific abnormality of chromosome 22, which is unusually short, as an acquired abnormality that is most commonly associated with chronic myelogenous leukemia (CML).[1] It is the result of a reciprocal translocation between chromosome 9 and chromosome 22, which is specifically designated t(9;22)(q34;q11). This gives rise to a fusion gene, BCR-ABL1, that juxtaposes the ABL1 gene on chromosome 9 (region q34) to a part of the BCR ("breakpoint cluster region") gene on chromosome 22 (region q11). The presence of this translocation is a highly sensitive test for CML, since 95% of people with CML have this abnormality (the remainder have either a cryptic translocation that is invisible on G-banded chromosome preparations, or a variant translocation involving another chromosome or chromosomes as well as the long arm of chromosomes 9 and 22). However, the presence of the Philadelphia (Ph) chromosome is not sufficiently specific to diagnose CML, since it is also found in acute lymphoblastic leukemia[2] (ALL, 25–30% in adult and 2–10% in pediatric cases) and occasionally in acute myelogenous leukemia (AML).

Molecular biology

File:Schematic of the Philadelphia Chromosome.svg
Schematic of the Philadelphia chromosome formation

The chromosomal defect in the Philadelphia chromosome is a translocation, in which parts of two chromosomes, 9 and 22, swap places. The result is that a fusion gene is created by juxtapositioning the Abl1 gene on chromosome 9 (region q34) to a part of the BCR ("breakpoint cluster region") gene on chromosome 22 (region q11). This is a reciprocal translocation, creating an elongated chromosome 9 (termed a derivative chromosome, or der 9), and a truncated chromosome 22 (the Philadelphia chromosome).[3][4] In agreement with the International System for Human Cytogenetic Nomenclature (ISCN), this chromosomal translocation is designated as t(9;22)(q34;q11). Abl stands for "Abelson", the name of a leukemia virus which carries a similar protein.

Translocation results in an oncogenic BCR-ABL gene fusion that can be found on the shorter derivative 22 chromosome. This gene encodes for a Bcr-abl fusion protein. Depending on the precise location of fusion, the molecular weight of this protein can range from 185 to 210 kDa. Consequently, bcr-abl is referred to as p210 or p185.

Three clinically important variants are the p190, p210, and p230 isoforms.[5] p190 is generally associated with acute lymphoblastic leukemia (ALL), while p210 is generally associated with chronic myeloid leukemia but can also be associated with ALL.[6] p230 is usually associated with chronic neutrophilic leukemia.[6] Additionally, the p190 isoform can also be expressed as a splice variant of p210.[7]

The Abl gene expresses a membrane-associated protein, a tyrosine kinase, and the BCR-Abl transcript is also translated into a tyrosine kinase. The activity of tyrosine kinases is typically controlled by other molecules, but the mutant tyrosine kinase of the BCR-Abl transcript codes for a protein that is "always on" or continuously activated, which results in unregulated cell division (i.e. cancer). Although the BCR region also expresses serine/threonine kinases, the tyrosine kinase function is very relevant for drug therapy. Tyrosine kinase inhibitors (such as imatinib and sunitinib) are important drugs against a variety of cancers including CML, renal cell carcinoma (RCC) and gastrointestinal stromal tumors (GISTs).

The fused BCR-Abl protein interacts with the interleukin-3 receptor beta(c) subunit. The ABL tyrosine kinase activity of BCR-Abl is elevated relative to wild-type ABL.[8] Since ABL activates a number of cell cycle-controlling proteins and enzymes, the result of the BCR-Abl fusion is to speed up cell division. Moreover, it inhibits DNA repair, causing genomic instability and potentially causing the feared blast crisis in CML.

Nomenclature

The Philadelphia chromosome is designated Ph (or Ph') chromosome and designates the shortened chromosome 22. It arises from the translocation, which is termed t(9;22)(q34.1;q11.2). This means there is a translocation between chromosome 9 and chromosome 22, with breaks happening in region (3), band (4), sub-band (1) of the long arm (q) of chromosome 9 and region (1), band (1), sub-band (2) of the long arm (q) of chromosome 22. Hence the chromosome breakpoints are written as (9q34.1) and (22q11.2), respectively, using ISCN standards. Notation omitting the sub-bands is also commonly seen: t(9;22)(q34;q11).

Therapy

Tyrosine kinase inhibitors

Crystal structure of Abl kinase domain (blue) in complex with 2nd generation tyrosine kinase inhibitor (TKI) nilotinib (red)

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

In the late 1990s, STI-571 (imatinib, Gleevec/Glivec) was identified by the pharmaceutical company Novartis (then known as Ciba Geigy) in high-throughput screens for tyrosine kinase inhibitors. Subsequent clinical trials led by Dr. Brian J. Druker at Oregon Health & Science University in collaboration with Dr. Charles Sawyers and Dr. Moshe Talpaz demonstrated that STI-571 inhibits proliferation of BCR-ABL-expressing hematopoietic cells. Although it did not eradicate CML cells, it did greatly limit the growth of the tumor clone and decreased the risk of the feared "blast crisis".[citation needed] In 2000 John Kuriyan determined the mechanism by which STI-571 inhibits the Abl kinase domain.[9] It was marketed in 2001 by Novartis as imatinib mesylate (Gleevec in the US, Glivec in Europe).

Other pharmacological inhibitors are being developed, which are more potent and/or are active against the emerging Gleevec/Glivec resistant BCR-abl clones in treated patients. The majority of these resistant clones are point-mutations in the kinase of BCR-abl. New inhibitors include dasatinib and nilotinib, which are significantly more potent than imatinib and may overcome resistance.

Axitinib, a drug used to treat renal cell carcinoma, has been shown to be effective at inhibiting the Abl kinase activity in patients with BCR-ABL1(T315I).[10] The T315I mutation in the fusion gene confers resistance to other tyrosine kinase inhibitors such as imatinib, however axitinib has been successfully been used to treat a patient with ALL carrying this mutation, as well as CML cells in culture.

Treatment of pediatric Ph+ ALL with a combination of standard chemotherapy and RTK inhibitors may result in remission,[citation needed] but the curative potential is unknown.

Blood or marrow transplants

A potentially curative, but risky, option for pediatric Ph+ ALL or Ph+ CML is bone marrow transplant or cord blood transplant, but chemotherapy is favored by some for achieving first remission (CR1). For some, bone marrow transplant from a matched sibling donor or a matched, unrelated donor may be favored when remission is obtained.

Cord blood transplant is favored by some when a 10/10 bone marrow match is not available, and cord blood transplant may have some advantages, including a reduced incidence of graft-vs-host disease (GVHD), which is a common and significant complication of transplant. However, transplant with cord blood sometimes requires longer periods of time for engraftment, which may increase the potential for complications due to infection. Regardless of the type of transplant, transplant-related mortality and relapse are possible, and the rates may change as treatment protocols improve. For second remission (CR2), if achieved, both chemotherapy and transplant options are possible, and many physicians prefer transplant.[citation needed]

History

The Philadelphia chromosome was first discovered and described in 1960 by Peter Nowell from the University of Pennsylvania School of Medicine and David Hungerford from the Fox Chase Cancer Center's Institute for Cancer Research and was therefore named after the city in which both facilities are located.[1][11][12]

In 1973, Janet D. Rowley at the University of Chicago identified the mechanism by which the Philadelphia chromosome arises as a translocation.[1][13][14]

See also

References

  1. 1.0 1.1 1.2 Wapner J.The Philadelphia Chromosome: A Genetic Mystery, a Lethal Cancer, and the Improbable Invention of a Lifesaving Treatment. ISBN 9781615191970
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. 6.0 6.1 Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.

External links