Antisymmetric tensor
In mathematics and theoretical physics, a tensor is antisymmetric on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged.[1][2] The index subset must generally either be all covariant or all contravariant.
For example,
holds when the tensor is antisymmetric on it first three indices.
If a tensor changes sign under exchange of any pair of its indices, then the tensor is completely (or totally) antisymmetric. A completely antisymmetric covariant tensor of order p may be referred to as a p-form, and a completely antisymmetric contravariant tensor may be referred to as a p-vector.
Contents
Antisymmetric and symmetric tensors
A tensor A that is antisymmetric on indices i and j has the property that the contraction with a tensor B that is symmetric on indices i and j is identically 0.
For a general tensor U with components and a pair of indices i and j, U has symmetric and antisymmetric parts defined as:
-
(symmetric part) (antisymmetric part).
Similar definitions can be given for other pairs of indices. As the term "part" suggests, a tensor is the sum of its symmetric part and antisymmetric part for a given pair of indices, as in
Notation
A shorthand notation for anti-symmetrization is denoted by a pair of square brackets. For example, in arbitrary dimensions, for an order 2 covariant tensor M,
and for an order 3 covariant tensor T,
In any number of dimensions, these are equivalent to
More generally, irrespective of the number of dimensions, antisymmetrization over p indices may be expressed as
In the above,
is the generalized Kronecker delta of the appropriate order.
Examples
Antisymmetric tensors include:
- The electromagnetic tensor,
in electromagnetism
- The Riemannian volume form on a pseudo-Riemannian manifold.
See also
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
External links
- [1] - mathworld, wolfram